Your browser doesn't support javascript.
loading
DeepCEST 7 T: Fast and homogeneous mapping of 7 T CEST MRI parameters and their uncertainty quantification.
Hunger, Leonie; Rajput, Junaid R; Klein, Kiril; Mennecke, Angelika; Fabian, Moritz S; Schmidt, Manuel; Glang, Felix; Herz, Kai; Liebig, Patrick; Nagel, Armin M; Scheffler, Klaus; Dörfler, Arnd; Maier, Andreas; Zaiss, Moritz.
Afiliação
  • Hunger L; Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
  • Rajput JR; Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
  • Klein K; Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
  • Mennecke A; Department of Computer Science, University of Copenhagen, Copenhagen, Denmark.
  • Fabian MS; Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
  • Schmidt M; Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
  • Glang F; Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
  • Herz K; Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
  • Liebig P; Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
  • Nagel AM; Department of Biomedical Magnetic Resonance, Eberhard Karls University Tübingen, Tübingen, Germany.
  • Scheffler K; Siemens Healthcare GmbH, Erlangen, Germany.
  • Dörfler A; Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
  • Maier A; Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
  • Zaiss M; Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
Magn Reson Med ; 89(4): 1543-1556, 2023 04.
Article em En | MEDLINE | ID: mdl-36377762
PURPOSE: In this work, we investigated the ability of neural networks to rapidly and robustly predict Lorentzian parameters of multi-pool CEST MRI spectra at 7 T with corresponding uncertainty maps to make them quickly and easily available for routine clinical use. METHODS: We developed a deepCEST 7 T approach that generates CEST contrasts from just 1 scan with robustness against B1 inhomogeneities. The input data for a neural feed-forward network consisted of 7 T in vivo uncorrected Z-spectra of a single B1 level, and a B1 map. The 7 T raw data were acquired using a 3D snapshot gradient echo multiple interleaved mode saturation CEST sequence. These inputs were mapped voxel-wise to target data consisting of Lorentzian amplitudes generated conventionally by 5-pool Lorentzian fitting of normalized, denoised, B0 - and B1 -corrected Z-spectra. The deepCEST network was trained with Gaussian negative log-likelihood loss, providing an uncertainty quantification in addition to the Lorentzian amplitudes. RESULTS: The deepCEST 7 T network provides fast and accurate prediction of all Lorentzian parameters also when only a single B1 level is used. The prediction was highly accurate with respect to the Lorentzian fit amplitudes, and both healthy tissues and hyperintensities in tumor areas are predicted with a low uncertainty. In corrupted cases, high uncertainty indicated wrong predictions reliably. CONCLUSION: The proposed deepCEST 7 T approach reduces scan time by 50% to now 6:42 min, but still delivers both B0 - and B1 -corrected homogeneous CEST contrasts along with an uncertainty map, which can increase diagnostic confidence. Multiple accurate 7 T CEST contrasts are delivered within seconds.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Temas: Geral / Tipos_de_cancer / Outros_tipos Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Neoplasias Limite: Humans Idioma: En Revista: Magn Reson Med Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Temas: Geral / Tipos_de_cancer / Outros_tipos Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Neoplasias Limite: Humans Idioma: En Revista: Magn Reson Med Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha