Your browser doesn't support javascript.
loading
Electronic Nose Sensor Drift Affects Diagnostic Reliability and Accuracy of Disease-Specific Algorithms.
Bosch, Sofie; de Menezes, Renée X; Pees, Suzanne; Wintjens, Dion J; Seinen, Margien; Bouma, Gerd; Kuyvenhoven, Johan; Stokkers, Pieter C F; de Meij, Tim G J; de Boer, Nanne K H.
Afiliação
  • Bosch S; Department of Gastroenterology and Hepatology, AG&M Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands.
  • de Menezes RX; Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands.
  • Pees S; Biostatistics Unit, Netherlands Cancer Institute, 1066 Amsterdam, The Netherlands.
  • Wintjens DJ; Department of Gastroenterology and Hepatology, AG&M Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands.
  • Seinen M; Department of Gastroenterology and Hepatology, Maastricht University Medical Centre (MUMC+), 6229 Maastricht, The Netherlands.
  • Bouma G; Department of Gastroenterology and Hepatology, OLVG West, 1061 Amsterdam, The Netherlands.
  • Kuyvenhoven J; Department of Gastroenterology and Hepatology, AG&M Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands.
  • Stokkers PCF; Department of Gastroenterology and Hepatology, Spaarne Gasthuis Hospital, 2134 Hoofddorp, The Netherlands.
  • de Meij TGJ; Department of Gastroenterology and Hepatology, OLVG West, 1061 Amsterdam, The Netherlands.
  • de Boer NKH; Department of Pediatric Gastroenterology, UMC, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands.
Sensors (Basel) ; 22(23)2022 Nov 28.
Article em En | MEDLINE | ID: mdl-36501947
ABSTRACT
Sensor drift is a well-known disadvantage of electronic nose (eNose) technology and may affect the accuracy of diagnostic algorithms. Correction for this phenomenon is not routinely performed. The aim of this study was to investigate the influence of eNose sensor drift on the development of a disease-specific algorithm in a real-life cohort of inflammatory bowel disease patients (IBD). In this multi-center cohort, patients undergoing colonoscopy collected a fecal sample prior to bowel lavage. Mucosal disease activity was assessed based on endoscopy. Controls underwent colonoscopy for various reasons and had no endoscopic abnormalities. Fecal eNose profiles were measured using Cyranose 320®. Fecal samples of 63 IBD patients and 63 controls were measured on four subsequent days. Sensor data displayed associations with date of measurement, which was reproducible across all samples irrespective of disease state, disease activity state, disease localization and diet of participants. Based on logistic regression, corrections for sensor drift improved accuracy to differentiate between IBD patients and controls based on the significant differences of six sensors (p = 0.004; p < 0.001; p = 0.001; p = 0.028; p < 0.001 and p = 0.005) with an accuracy of 0.68. In this clinical study, short-term sensor drift affected fecal eNose profiles more profoundly than clinical features. These outcomes emphasize the importance of sensor drift correction to improve reliability and repeatability, both within and across eNose studies.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Assunto principal: Doenças Inflamatórias Intestinais / Compostos Orgânicos Voláteis Tipo de estudo: Clinical_trials / Diagnostic_studies Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Holanda

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Assunto principal: Doenças Inflamatórias Intestinais / Compostos Orgânicos Voláteis Tipo de estudo: Clinical_trials / Diagnostic_studies Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Holanda