RUNX3 improves CAR-T cell phenotype and reduces cytokine release while maintaining CAR-T function.
Med Oncol
; 40(3): 89, 2023 Feb 03.
Article
em En
| MEDLINE
| ID: mdl-36735165
CAR-T therapy has shown successful in the treatment of certain types of hematological malignancy, while the efficacy of CAR-T cell in treating solid tumors has been limited due to the exhaustion of CAR-T caused by the tumor microenvironment in solid tumors. Therefore, improving the exhaustion of CAR-T cell is one of the inspiring strategies for CAR-T treatment of solid tumors. As an important regulator in T cell immunity, the transcription factor RUNX3 not only negatively regulates the terminal differentiation T-bet gene, reducing the ultimate differentiation of T cells, but also increases the residency of T cells in non-lymphoid tissues and tumors. By overexpressing RUNX3 in CAR-T cells, we found that increasing the expression of RUNX3 maintained the low differentiation of CAR-T cells, further improving the exhaustion of CAR-T cells during antigen stimulation. In vitro, we found that RUNX3 could reduce the release of cytokines while maintaining CAR-T cells function. In re-challenge experiments, CAR-T cells overexpressing RUNX3 (Runx3-OE CAR-T) were safer than conventional CAR-T cells, while RUNX3 could also maintain the anti-tumor efficacy of CAR-T cells in vivo. Collectively, we found that Runx3-OE CAR-T cells can improve CAR-T phenotype and reduce cytokines release while maintaining CAR-T cells function, which may improve the safety of CAR-T therapy in clinical trials.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Temas:
Geral
/
Tipos_de_cancer
/
Outros_tipos
Base de dados:
MEDLINE
Assunto principal:
Receptores de Antígenos Quiméricos
/
Neoplasias
Limite:
Humans
Idioma:
En
Revista:
Med Oncol
Assunto da revista:
NEOPLASIAS
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
China