Green Nanoformulations of Polyvinylpyrrolidone-Capped Metal Nanoparticles: A Study at the Hybrid Interface with Biomimetic Cell Membranes and In Vitro Cell Models.
Nanomaterials (Basel)
; 13(10)2023 May 12.
Article
em En
| MEDLINE
| ID: mdl-37242040
Noble metal nanoparticles (NP) with intrinsic antiangiogenic, antibacterial, and anti-inflammatory properties have great potential as potent chemotherapeutics, due to their unique features, including plasmonic properties for application in photothermal therapy, and their capability to slow down the migration/invasion speed of cancer cells and then suppress metastasis. In this work, gold (Au), silver (Ag), and palladium (Pd) NP were synthesized by a green redox chemistry method with the reduction of the metal salt precursor with glucose in the presence of polyvinylpyrrolidone (PVP) as stabilizing and capping agent. The physicochemical properties of the PVP-capped NP were investigated by UV-visible (UV-vis) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopies, dynamic light scattering (DLS), and atomic force microscopy (AFM), to scrutinize the optical features and the interface between the metal surface and the capping polymer, the hydrodynamic size, and the morphology, respectively. Biophysical studies with model cell membranes were carried out by using laser scanning confocal microscopy (LSM) with fluorescence recovery after photobleaching (FRAP) and fluorescence resonance energy transfer (FRET) techniques. To this purpose, artificial cell membranes of supported lipid bilayers (SLBs) made with 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (POPC) dye-labeled with 7-nitro-2-1,3-benzoxadiazol-4-yl (NBD, FRET donor) and/or lissamine rhodamine B sulfonyl (Rh, FRET acceptor) were prepared. Proof-of-work in vitro cellular experiments were carried out with prostate cancer cells (PC-3 line) in terms of cytotoxicity, cell migration (wound scratch assay), NP cellular uptake, and cytoskeleton actin perturbation.
Texto completo:
1
Coleções:
01-internacional
Temas:
Geral
Base de dados:
MEDLINE
Idioma:
En
Revista:
Nanomaterials (Basel)
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Itália