Your browser doesn't support javascript.
loading
AtSAMS regulates floral organ development by DNA methylation and ethylene signaling pathway.
Hu, Wenli; Hu, Shuang; Li, Shaozhuang; Zhou, Qi; Xie, Zijing; Hao, Xiaohua; Wu, Sha; Tian, Lianfu; Li, Dongping.
Afiliação
  • Hu W; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
  • Hu S; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
  • Li S; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
  • Zhou Q; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
  • Xie Z; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
  • Hao X; College of Life and Environmental Science, Hunan University of Arts and Science, Changde 415000, China.
  • Wu S; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
  • Tian L; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha 410081, China. Electronic address: hnsdtlf@163.com.
  • Li D; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha 410081, China. Electronic address: dli@hunnu.edu.cn.
Plant Sci ; 334: 111767, 2023 Sep.
Article em En | MEDLINE | ID: mdl-37302530
ABSTRACT
S-adenosylmethionine synthase is the key enzyme involved in the biosynthesis of S-adenosylmethionine, which serves as the universal methyl group donor and a common precursor for the biosynthesis of ethylene and polyamines. However, little is known about how SAMS controls plant development. Here, we report that the abnormal floral organ development in the AtSAMS-overexpressing plants is caused by DNA demethylation and ethylene signaling. The whole-genome DNA methylation level decreased, and ethylene content increased in SAMOE. Wild-type plants treated with DNA methylation inhibitor mimicked the phenotypes and the ethylene levels in SAMOE, suggesting that DNA demethylation enhanced ethylene biosynthesis, which led to abnormal floral organ development. DNA demethylation and elevated ethylene resulted in changes in the expression of ABCE genes, which is essential for floral organ development. Furthermore, the transcript levels of ACE genes were highly correlated to their methylation levels, except for the down-regulation of the B gene, which might have resulted from demethylation-independent ethylene signaling. SAMS-mediated methylation and ethylene signaling might create crosstalk in the process of floral organ development. Together, we provide evidence that AtSAMS regulates floral organ development by DNA methylation and ethylene signaling pathway.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Temas: Geral / Agentes_cancerigenos Base de dados: MEDLINE Assunto principal: Arabidopsis / Proteínas de Arabidopsis Idioma: En Revista: Plant Sci Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Temas: Geral / Agentes_cancerigenos Base de dados: MEDLINE Assunto principal: Arabidopsis / Proteínas de Arabidopsis Idioma: En Revista: Plant Sci Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China