Your browser doesn't support javascript.
loading
Impact of High-Fidelity Microvascular Surgery Simulation on Resident Training.
Joy, Matthew T; Applebaum, Matthew A; Anderson, William M; Serletti, Joseph M; Capito, Anthony E.
Afiliação
  • Joy MT; Section of Plastic Surgery, Virginia Tech Carilion School of Medicine, Roanoke, Virginia.
  • Applebaum MA; Section of Plastic Surgery, Virginia Tech Carilion School of Medicine, Roanoke, Virginia.
  • Anderson WM; Section of Plastic Surgery, Virginia Tech Carilion School of Medicine, Roanoke, Virginia.
  • Serletti JM; Division of Plastic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania.
  • Capito AE; Section of Plastic Surgery, Virginia Tech Carilion School of Medicine, Roanoke, Virginia.
J Reconstr Microsurg ; 40(3): 211-216, 2024 Mar.
Article em En | MEDLINE | ID: mdl-37315933
ABSTRACT

BACKGROUND:

Microsurgery requires a high level of skill achieved only through repeated practice. With duty-hour restrictions and supervision requirements, trainees require more opportunities for practice outside the operating room. Studies show simulation training improves knowledge and skills. While numerous microvascular simulation models exist, virtually all lack the combination of human tissue and pulsatile flow.

METHODS:

The authors utilized a novel simulation platform incorporating cryopreserved human vein and a pulsatile flow circuit for microsurgery training at two academic centers. Subjects performed a standardized simulated microvascular anastomosis and repeated this task at subsequent training sessions. Each session was evaluated using pre- and postsimulation surveys, standardized assessment forms, and the time required to complete each anastomosis. Outcomes of interest include change in self-reported confidence scores, skill assessment scores, and time to complete the task.

RESULTS:

In total, 36 simulation sessions were recorded including 21 first attempts and 15 second attempts. Pre- and postsimulation survey data across multiple attempts demonstrated a statistically significant increase in self-reported confidence scores. Time to complete the simulation and skill assessment scores improved with multiple attempts; however, these findings were not statistically significant. Subjects unanimously reported on postsimulation surveys that the simulation was beneficial in improving their skills and confidence.

CONCLUSION:

The combination of human tissue and pulsatile flow results in a simulation experience that approaches the level of realism achieved with live animal models. This allows plastic surgery residents to improve microsurgical skills and increase confidence without the need for expensive animal laboratories or any undue risk to patients.
Assuntos

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Assunto principal: Treinamento por Simulação / Internato e Residência Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: J Reconstr Microsurg Assunto da revista: NEUROCIRURGIA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Assunto principal: Treinamento por Simulação / Internato e Residência Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: J Reconstr Microsurg Assunto da revista: NEUROCIRURGIA Ano de publicação: 2024 Tipo de documento: Article