Your browser doesn't support javascript.
loading
CLDN18.2 BiTE Engages Effector and Regulatory T Cells for Antitumor Immune Response in Preclinical Models of Pancreatic Cancer.
Xu, Yao; Fu, Juan; Henderson, MacKenzie; Lee, Fei; Jurcak, Noelle; Henn, Anja; Wahl, Joachim; Shao, Yingkuan; Wang, Jianxin; Lyman, Melissa; Funes, Vanessa; Espinoza, Birginia; Zhang, Rui; Washington, India; Chen, Sophia Y; Zlomke, Haley; Wang, Junke; Niu, Nan; Li, Pan; Meng, Fengxi; Burns, William; Friedrich, Matthias; Stienen, Sabine; Bailis, Julie M; Zheng, Lei.
Afiliação
  • Xu Y; The Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Pancreatic Cancer Precision Medicine Center of Excellence Program,
  • Fu J; The Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Bloomberg-Kimmel In
  • Henderson M; The Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.
  • Lee F; Oncology Research, Amgen Research, Amgen, Inc, South San Francisco, California.
  • Jurcak N; The Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Cellular and Molecular Medicine G
  • Henn A; Translational Safety and Bioanalytical Sciences, Amgen Research (Munich) GmbH, Munich, Germany.
  • Wahl J; Translational Safety and Bioanalytical Sciences, Amgen Research (Munich) GmbH, Munich, Germany.
  • Shao Y; The Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Bloomberg-Kimmel In
  • Wang J; The Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Bloomberg-Kimmel In
  • Lyman M; The Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Cellular and Molecular Medicine G
  • Funes V; The Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Bloomberg-Kimmel In
  • Espinoza B; The Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Bloomberg-Kimmel In
  • Zhang R; The Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Bloomberg-Kimmel In
  • Washington I; The Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Bloomberg-Kimmel In
  • Chen SY; The Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Pancreatic Cancer Precision Medicine Center of Excellence Program,
  • Zlomke H; The Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Pancreatic Cancer Precision Medicine Center of Excellence Program,
  • Wang J; The Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Bloomberg-Kimmel In
  • Niu N; The Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Bloomberg-Kimmel In
  • Li P; The Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Bloomberg-Kimmel In
  • Meng F; The Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Bloomberg-Kimmel In
  • Burns W; The Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Pancreatic Cancer Precision Medicine Center of Excellence Program,
  • Friedrich M; Translational Safety and Bioanalytical Sciences, Amgen Research (Munich) GmbH, Munich, Germany.
  • Stienen S; Clinical Development, Amgen Research (Munich) GmbH, Munich, Germany.
  • Bailis JM; Oncology Research, Amgen Research, Amgen, Inc, South San Francisco, California. Electronic address: jbailis@amgen.com.
  • Zheng L; The Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Pancreatic Cancer Precision Medicine Center of Excellence Program,
Gastroenterology ; 165(5): 1219-1232, 2023 Nov.
Article em En | MEDLINE | ID: mdl-37507075
BACKGROUND & AIMS: BiTE (bispecific T-cell engager) immune therapy has demonstrated clinical activity in multiple tumor indications, but its influence in the tumor microenvironment remains unclear. CLDN18.2 is overexpressed in solid tumors including gastric cancer (GC) and pancreatic ductal adenocarcinoma (PDAC), both of which are characterized by the presence of immunosuppressive cells, including regulatory T cells (Tregs) and few effector T cells (Teffs). METHODS: We evaluated the activity of AMG 910, a CLDN18.2-targeted half-life extended (HLE) BiTE molecule, in GC and PDAC preclinical models and cocultured Tregs and Teffs in the presence of CLDN18.2-HLE-BiTE. RESULTS: AMG 910 induced potent, specific cytotoxicity in GC and PDAC cell lines. In GSU and SNU-620 GC xenograft models, AMG 910 engaged human CD3+ T cells with tumor cells, resulting in significant antitumor activity. AMG 910 monotherapy, in combination with a programmed death-1 (PD-1) inhibitor, suppressed tumor growth and enhanced survival in an orthotopic Panc4.14 PDAC model. Moreover, Treg infusion enhanced the antitumor efficacy of AMG 910 in the Panc4.14 model. In syngeneic KPC models of PDAC, treatment with a mouse surrogate CLDN18.2-HLE-BiTE (muCLDN18.2-HLE-BiTE) or the combination with an anti-PD-1 antibody significantly inhibited tumor growth. Tregs isolated from mice bearing KPC tumors that were treated with muCLDN18.2-HLE-BiTE showed decreased T cell suppressive activity and enhanced Teff cytotoxic activity, associated with increased production of type I cytokines and expression of Teff gene signatures. CONCLUSIONS: Our data suggest that BiTE molecule treatment converts Treg function from immunosuppressive to immune enhancing, leading to antitumor activity in immunologically "cold" tumors.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Temas: Geral / Tipos_de_cancer / Outros_tipos Base de dados: MEDLINE Assunto principal: Neoplasias Pancreáticas / Anticorpos Biespecíficos / Carcinoma Ductal Pancreático Limite: Animals / Humans Idioma: En Revista: Gastroenterology Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Temas: Geral / Tipos_de_cancer / Outros_tipos Base de dados: MEDLINE Assunto principal: Neoplasias Pancreáticas / Anticorpos Biespecíficos / Carcinoma Ductal Pancreático Limite: Animals / Humans Idioma: En Revista: Gastroenterology Ano de publicação: 2023 Tipo de documento: Article