Your browser doesn't support javascript.
loading
LIGHT (TNFSF14) promotes the differentiation of human bone marrow-derived mesenchymal stem cells into functional hepatocyte-like cells.
Heo, Sook-Kyoung; Yu, Ho-Min; Kim, Do Kyoung; Seo, Hye Jin; Shin, Yerang; Kim, Sung Ah; Kim, Minhui; Kim, Youjin; Lee, Yoo Jin; Noh, Eui-Kyu; Jo, Jae-Cheol.
Afiliação
  • Heo SK; Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea.
  • Yu HM; Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea.
  • Kim DK; Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea.
  • Seo HJ; Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea.
  • Shin Y; Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea.
  • Kim SA; Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea.
  • Kim M; Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea.
  • Kim Y; Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea.
  • Lee YJ; Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea.
  • Noh EK; Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea.
  • Jo JC; Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea.
PLoS One ; 18(8): e0289798, 2023.
Article em En | MEDLINE | ID: mdl-37552689
ABSTRACT
Liver transplantation is the most effective treatment option for patients with acute or chronic liver failure. However, the applicability and effectiveness of this modality are often limited by a shortage of donors, surgical complications, high medical costs, and the need for continuing immunosuppressive therapy. An alternative approach is liver cell transplantation. LIGHT (a member of the tumor necrosis factor superfamily) could be a promising candidate for promoting the differentiation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) into hepatocyte-like cells. In this study, we investigated the effect of LIGHT on hBM-MSC differentiation into hepatocyte-like cells. Our previous results showed that LIGHT receptor lymphotoxin-ß receptor (LTßR) is constitutively expressed on the surface of hBM-MSCs. Upon treatment with recombinant human LIGHT (rhLIGHT), the phenotype of hBM-MSCs changed to round or polygonal cells. In addition, the cells exhibited high levels of hepatocyte-specific markers, including albumin, cytokeratin-18 (CK-18), CK-19, cytochrome P450 family 1 subfamily A member 1 (CYP1A1), CYP1A2, CYP3A4, SRY-box transcription factor 17 (SOX17), and forkhead box A2 (FOXA2). These results indicate that rhLIGHT enhances the differentiation of hBM-MSCs into functional hepatocyte-like cells. Furthermore, rhLIGHT-induced hepatocyte-like cells showed a higher ability to store glycogen and uptake indocyanine green compared with control cells, indicating functional progression. Additionally, treatment with rhLIGHT increased the number, viability, and proliferation of cells by inducing the S/G2/M phase and upregulating the expression of various cyclin and cyclin dependent kinase (CDK) proteins. We also found that the hepatogenic differentiation of hBM-MSCs induced by rhLIGHT was mediated by the activation of signal transducer and activator of transcription 3 (STAT3) and STAT5 pathways. Overall, our findings suggest that LIGHT plays an essential role in promoting the hepatogenic differentiation of hBM-MSCs. Hence, LIGHT may be a valuable factor for stem cell therapy.
Assuntos

Texto completo: 1 Coleções: 01-internacional Temas: Geral / Tratamento / Transplante_de_medula_ossea Base de dados: MEDLINE Assunto principal: Medula Óssea / Células-Tronco Mesenquimais Limite: Humans Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Temas: Geral / Tratamento / Transplante_de_medula_ossea Base de dados: MEDLINE Assunto principal: Medula Óssea / Células-Tronco Mesenquimais Limite: Humans Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2023 Tipo de documento: Article