Your browser doesn't support javascript.
loading
Thermal neutron detection and track recognition method in reference and out-of-field radiotherapy FLASH electron fields using Timepix3 detectors.
Oancea, Cristina; Solc, Jaroslav; Bourgouin, Alexandra; Granja, Carlos; Jakubek, Jan; Pivec, Jiri; Riemer, Felix; Vykydal, Zdenek; Worm, Steven; Marek, Lukas.
Afiliação
  • Oancea C; ADVACAM, U Pergamenky 12, 170 00 Prague 7, Czech Republic.
  • Solc J; University of Bucharest, Bucharest, Romania.
  • Bourgouin A; Czech Metrology Institute, Okruzni 31, 638 00 Brno, Czech Republic.
  • Granja C; Dosimetry for Radiation Therapy and Diagnostic Radiology, Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, 38116, Germany.
  • Jakubek J; ADVACAM, U Pergamenky 12, 170 00 Prague 7, Czech Republic.
  • Pivec J; ADVACAM, U Pergamenky 12, 170 00 Prague 7, Czech Republic.
  • Riemer F; ADVACAM, U Pergamenky 12, 170 00 Prague 7, Czech Republic.
  • Vykydal Z; Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany.
  • Worm S; Czech Metrology Institute, Okruzni 31, 638 00 Brno, Czech Republic.
  • Marek L; Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany.
Phys Med Biol ; 68(18)2023 09 14.
Article em En | MEDLINE | ID: mdl-37607560
ABSTRACT
Objective.This work presents a method for enhanced detection, imaging, and measurement of the thermal neutron flux.Approach. Measurements were performed in a water tank, while the detector is positioned out-of-field of a 20 MeV ultra-high pulse dose rate electron beam. A semiconductor pixel detector Timepix3 with a silicon sensor partially covered by a6LiF neutron converter was used to measure the flux, spatial, and time characteristics of the neutron field. To provide absolute measurements of thermal neutron flux, the detection efficiency calibration of the detectors was performed in a reference thermal neutron field. Neutron signals are recognized and discriminated against other particles such as gamma rays and x-rays. This is achieved by the resolving power of the pixel detector using machine learning algorithms and high-resolution pattern recognition analysis of the high-energy tracks created by thermal neutron interactions in the converter.Main results. The resulting thermal neutrons equivalent dose was obtained using conversion factor (2.13(10) pSv·cm2) from thermal neutron fluence to thermal neutron equivalent dose obtained by Monte Carlo simulations. The calibrated detectors were used to characterize scattered radiation created by electron beams. The results at 12.0 cm depth in the beam axis inside of the water for a delivered dose per pulse of 1.85 Gy (pulse length of 2.4µs) at the reference depth, showed a contribution of flux of 4.07(8) × 103particles·cm-2·s-1and equivalent dose of 1.73(3) nSv per pulse, which is lower by ∼9 orders of magnitude than the delivered dose.Significance. The presented methodology for in-water measurements and identification of characteristic thermal neutrons tracks serves for the selective quantification of equivalent dose made by thermal neutrons in out-of-field particle therapy.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Temas: Geral / Radioterapia Base de dados: MEDLINE Assunto principal: Algoritmos / Elétrons Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Phys Med Biol Ano de publicação: 2023 Tipo de documento: Article País de afiliação: República Tcheca

Texto completo: 1 Coleções: 01-internacional Temas: Geral / Radioterapia Base de dados: MEDLINE Assunto principal: Algoritmos / Elétrons Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Phys Med Biol Ano de publicação: 2023 Tipo de documento: Article País de afiliação: República Tcheca