Differential regulation of fibronectin expression and fibrillogenesis by autocrine TGF-ß1 signaling in malignant and benign mammary epithelial cells.
Int J Biochem Cell Biol
; 165: 106478, 2023 Dec.
Article
em En
| MEDLINE
| ID: mdl-37866655
Remodeling of the extracellular matrix (ECM) is a key hallmark of cancer progression. A critical component of ECM remodeling is the assembly of the glycoprotein fibronectin (FN) into insoluble fibrils, which provide a scaffold for invading vascular endothelial cells and escaping cancer cells, as well as a framework for collagen deposition and oncogenic cytokine tethering. FN fibril assembly is induced by Transforming Growth Factor-ß1 (TGF-ß1), which was originally identified for its role in malignant transformation. Addition of exogenous TGF-ß1 drives FN fibril assembly while also upregulating endogenous TGF-ß1 expression and autocrine signaling. In the current study, we sought to determine if autocrine TGF-ß1 signaling plays a role in FN fibril formation in either MCF10A mammary epithelial cells, which behave similarly to healthy epithelia, or malignant MDA- MB-231 breast cancer cells. Our results show two interesting findings: first, malignant MDA-MB- 231 cells assemble less FN into fibrils, despite expressing and secreting more soluble FN; second, autocrine TGF-ß1 signaling is required for FN fibril formation in MCF10A epithelial cells, even in the presence of exogenous, active TGF-ß1. This suggests that autocrine TGF-ß1 is signaling through distinct pathways from active exogenous TGF-ß1. We hypothesized that this signaling was mediated by interactions between the TGF-ß1 latency associated peptide (LAP) and αv integrins; indeed, incubating MCF10As with soluble LAP, even in the absence of the active TGF-ß1 ligand, partially recovered FN fibril assembly. Taken together, these data suggests that autocrine TGF-ß1 plays a critical role in FN fibril assembly, and this interaction is mediated by LAP-integrin signaling.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Temas:
Geral
Base de dados:
MEDLINE
Assunto principal:
Fibronectinas
/
Fator de Crescimento Transformador beta1
Idioma:
En
Revista:
Int J Biochem Cell Biol
Assunto da revista:
BIOQUIMICA
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Estados Unidos