Your browser doesn't support javascript.
loading
Identification of DNA damage response-related genes as biomarkers for castration-resistant prostate cancer.
Oshima, Masashi; Takayama, Ken-Ichi; Yamada, Yuta; Kimura, Naoki; Kume, Haruki; Fujimura, Tetsuya; Inoue, Satoshi.
Afiliação
  • Oshima M; Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho Itabashi-ku, Tokyo, 173-0015, Japan.
  • Takayama KI; Department of Urology, Jichi Medical University, Tochigi, Japan.
  • Yamada Y; Department of Urology, Jichi Medical University Saitama Medical Center, Saitama, Japan.
  • Kimura N; Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho Itabashi-ku, Tokyo, 173-0015, Japan.
  • Kume H; Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Fujimura T; Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Inoue S; Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Sci Rep ; 13(1): 19602, 2023 11 10.
Article em En | MEDLINE | ID: mdl-37950047
Although hormone therapy is effective for the treatment of prostate cancer (Pca), many patients develop a lethal type of Pca called castration-resistant prostate cancer (CRPC). Dysregulation of DNA damage response (DDR)-related genes leads to Pca progression. Here, we explored DDR-related signals upregulated in CRPC tissues. We analyzed the gene expression profiles in our RNA-sequence (RNA-seq) dataset containing benign prostate, primary Pca, and CRPC samples. We identified six DDR-related genes (Ribonuclease H2 Subunit A (RNASEH2A), replication factor C subunit 2 (RFC2), RFC4, DNA Ligase 1 (LIG1), DNA polymerase D1 (POLD1), and DNA polymerase E4 (POLE4)) that were upregulated in CRPC compared with Pca tissues. By analyzing public databases and validation studies, we focused on RFC2 as a new biomarker. Functional analysis demonstrated that silencing of RFC2 expression inhibited cell proliferation and induced the expression of DNA damage and apoptosis markers in CRPC model cells. Furthermore, immunohistochemical (IHC) analysis revealed that high expression of RFC2 protein correlated with poor prognosis in patients with Pca and increased expression in CRPC tissues compared with localized Pca. Thus, our study suggests that six DDR-related genes would be important for Pca progression. RFC2 could be a useful biomarker associated with poor outcomes of patients with Pca.
Assuntos

Texto completo: 1 Coleções: 01-internacional Temas: Geral / Tipos_de_cancer / Prostata Base de dados: MEDLINE Assunto principal: Neoplasias de Próstata Resistentes à Castração Limite: Humans / Male Idioma: En Revista: Sci Rep Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Temas: Geral / Tipos_de_cancer / Prostata Base de dados: MEDLINE Assunto principal: Neoplasias de Próstata Resistentes à Castração Limite: Humans / Male Idioma: En Revista: Sci Rep Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Japão