Your browser doesn't support javascript.
loading
Clinical application of machine learning-based pathomics signature of gastric atrophy.
Lan, Yadi; Han, Bing; Zhai, Tianyu; Xu, Qianqian; Li, Zhiwei; Liu, Mingyue; Xue, Yining; Xu, Hongwei.
Afiliação
  • Lan Y; Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
  • Han B; Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
  • Zhai T; Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
  • Xu Q; Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
  • Li Z; Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
  • Liu M; Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
  • Xue Y; Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
  • Xu H; Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
Front Oncol ; 14: 1289265, 2024.
Article em En | MEDLINE | ID: mdl-38476364
ABSTRACT

Background:

The diagnosis of gastric atrophy is highly subjective, and we aimed to establish a model of gastric atrophy based on pathological features to improve diagnostic consistency.

Methods:

We retrospectively collected the HE-stained pathological slides of gastric biopsies and used CellProfiler software for image segmentation and feature extraction of ten representative images for each sample. Subsequently, we employed the Least absolute shrinkage and selection operator (LASSO) to select features and different machine learning (ML) algorithms to construct the diagnostic models for gastric atrophy.

Results:

We selected 289 gastric biopsy specimens for training, testing, and external validation. We extracted 464 pathological features and screened ten features by LASSO to establish the diagnostic model for moderate-to-severe atrophy. The range of area under the curve (AUC) for various machine learning algorithms was 0.835-1.000 in the training set, 0.786-0.949 in the testing set, and 0.689-0.818 in the external validation set. LR model had the highest AUC value, with 0.900 (95% CI 0.852-0.947) in the training set, 0.901 (95% CI 0.807-0.996) in the testing set, and 0.818 (95% CI 0.714-0.923) in the external validation set. The atrophy pathological score based on the LR model was associated with endoscopic atrophy grading (Z=-2.478, P=0.013) and gastric cancer (GC) (OR=5.70, 95% CI 2.63-12.33, P<0.001).

Conclusion:

The ML model based on pathological features could improve the diagnostic consistency of gastric atrophy, which is also associated with endoscopic atrophy grading and GC.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Idioma: En Revista: Front Oncol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Idioma: En Revista: Front Oncol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China