Your browser doesn't support javascript.
loading
Forsythoside A regulates pulmonary fibrosis by inhibiting endothelial-to-mesenchymal transition and lung fibroblast proliferation via the PTPRB signaling.
Zhang, Qinqin; Zhang, Beibei; Yang, Fan; Hu, Yingbo; Fan, Ruyi; Wang, Mengya; Chen, Suiqing.
Afiliação
  • Zhang Q; Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Zhengzhou 450046, Henan, China.
  • Zhang B; Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Zhengzhou 450046, Henan, China; Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R
  • Yang F; Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Zhengzhou 450046, Henan, China.
  • Hu Y; Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China.
  • Fan R; Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China.
  • Wang M; Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China.
  • Chen S; Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Chinese Medicine Resources and Chemistry, Zhengzhou 450046, Henan, China; Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R
Phytomedicine ; 130: 155715, 2024 Jul 25.
Article em En | MEDLINE | ID: mdl-38788399
ABSTRACT

BACKGROUND:

Pulmonary fibrosis (PF) is an end-stage change in many interstitial lung diseases, whereas no proven effective anti-pulmonary fibrotic treatments. Forsythoside A (FA) derived from Forsythia suspensa (Thunb.) Vahl, has been found to possess lung-protective effect. However, studies on its anti-pulmonary fibrosis effect are limited and its mechanism of action remains unknown.

PURPOSE:

This study aimed to explore the underlying mechanism of FA on PF.

METHODS:

Male C57BL/6 mice were randomized into normal (CON), model (BLM), pirfenidone (PFD), low- and high-dose FA (FA-L, FA-H, respectively). Except for the CON group, which was injected with the same dose of saline, the model of PF was established by intratracheal instillation of BLM, during which the survival rate and body weight changes of the mice were measured. The lung histopathology was evaluated by Hematoxylin-eosin, Sirius red, and Masson staining. Transcriptome analysis was performed to screen for the differential genes associated with the role of FA in PF. Differential genes in normal and pulmonary fibrosis patients with the GSE2052 dataset were analyzed in the GEO database. The levels of CTGF, α-SMA, MMP-8 in lung and TNF-α in bronchoalveolar lavage fluid (BALF) were detected by ELISA. The levels of HYP in lungs were detected by digestion. The mRNA and protein levels of MMP-7, E-cadherin, CD31, α-SMA, TGF-ß1, IL-6, ß-catenin, ZO-1, PTPRB, E-cadherin, and vimentin in lungs were detected by RT-qPCR and Western blot. The expression of CD31, α-SMA, TGF-ß1 and ZO-1 were detected by immunofluorescence. TGF-ß1-stimulated HFL1 cells and human umbilical vein endothelial cells (HUVECs) were used in an attempt to explore the possible role of protein tyrosine phosphatase receptor type B (PTPRB) involved in FA-induced improvement of PF.

RESULTS:

The results showed that FA could improve the survival rate and body weight of PF mice. FA could alleviate the symptoms of alveolar wall thickening, inflammatory cell infiltration, blue collagen fiber deposition, collagen fiber type Ⅰ and type Ⅲ in mice with PF. In addition, FA could reduce the levels of HYP, CTGF, α-SMA, TGF-ß1, TNF-α, ß-catenin and MMP8, and regulate the expression levels of CD31, ZO-1, PTPRB and E-cadherin in lung of mice with PF, inhibiting endothelial-to-mesenchymal transition (EndMT) and fibroblasts proliferation. In the GSE2052 dataset, the expression level of PTPRB is reduced in lung tissue from PF patients, and results from transcriptome sequencing indicate that PTPRB expression is also reduced in PF mice. In addition, the effect of FA on TGF-ß1-induced HFL1 or HUVECs cells could be attenuated by the inhibitor of PTPRB, suggesting that the effect of FA on PF is related to PTPRB.

CONCLUSION:

This study demonstrated that FA could ameliorate PF by inhibiting lung fibroblast proliferation and EndMT, and that PTPRB might be a target of FA to ameliorate PF, which provided evidence to support FA as a candidate phytochemical for PF.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Assunto principal: Fibrose Pulmonar / Transdução de Sinais / Forsythia / Glicosídeos / Pulmão / Camundongos Endogâmicos C57BL Limite: Animals / Humans / Male Idioma: En Revista: Phytomedicine Assunto da revista: TERAPIAS COMPLEMENTARES Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Assunto principal: Fibrose Pulmonar / Transdução de Sinais / Forsythia / Glicosídeos / Pulmão / Camundongos Endogâmicos C57BL Limite: Animals / Humans / Male Idioma: En Revista: Phytomedicine Assunto da revista: TERAPIAS COMPLEMENTARES Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China