Your browser doesn't support javascript.
loading
INHIBITION OF INTEGRIN VLA-3 AND TETRASPANIN CD151 PROTECTS AGAINST NEUTROPHIL-MEDIATED ENDOTHELIAL DAMAGE.
Ciambella, Chelsey; Witt, Hadley; Dickinson, Catherine M; Smith, Madison L; Coburn, Nicholas; Messina, Nicholas; Heffernan, Daithi S; Kim, Minsoo; Reichner, Jonathan S.
Afiliação
  • Ciambella C; Rhode Island Hospital, Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University, Providence, Rhode Island.
  • Dickinson CM; Rhode Island Hospital, Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University, Providence, Rhode Island.
  • Smith ML; Rhode Island Hospital, Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University, Providence, Rhode Island.
  • Coburn N; Rhode Island Hospital, Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University, Providence, Rhode Island.
  • Messina N; Rhode Island Hospital, Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University, Providence, Rhode Island.
  • Heffernan DS; Rhode Island Hospital, Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University, Providence, Rhode Island.
  • Kim M; Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York.
  • Reichner JS; Rhode Island Hospital, Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University, Providence, Rhode Island.
Shock ; 62(2): 165-172, 2024 Aug 01.
Article em En | MEDLINE | ID: mdl-38813923
ABSTRACT
ABSTRACT

Background:

The recruitment of neutrophils to sites of localized injury or infection is initiated by changes on the surface of endothelial cells located in proximity to tissue damage. Inflammatory mediators, such as TNF-α, increase surface expression of adhesive ligands and receptors on the endothelial surface to which neutrophils tether and adhere. Neutrophils then transit through the activated endothelium to reach sites of tissue injury with little lasting vascular injury. However, in cases of sepsis, the interaction of endothelial cells with highly activated neutrophils can cause damage vascular damage. The identification of molecules that are essential for neutrophil diapedesis may reveal targets of therapeutic opportunity for preservation of endothelial function in the presence of critical illness. We tested the hypothesis that inhibition of neutrophil ß1 integrin very late antigen-3 (VLA-3; α3ß1) and/or inhibition of the tetraspanin (TM4) family member CD151 would protect against neutrophil-mediated loss of endothelial function.

Methods:

Blood was obtained from septic patients or healthy donors. Neutrophils were purified, and aliquots were treated with/without proinflammatory molecules. Confluent human umbilical vascular endothelial cells were activated with TNF-α. Electric cell impedance sensing was used to determine monolayer resistance over time after the addition of neutrophils that were treated with blocking antibodies against VLA-3 and/or CD151 or isotype controls. Groups (depending on relevancy) were analyzed by Mann-Whitney U test, Wilcoxon test, or repeated-measures one-way ANOVA.

Results:

Neutrophils from septic patients and neutrophils activated ex vivo reduced endothelial monolayer resistance to a greater extent than neutrophils from healthy donors. Antibody blockade of VLA-3 and/or CD151 significantly reduced activation-associated endothelial damage. Similar findings were demonstrated on fibronectin, collagen I, collagen IV, and laminin, suggesting that neutrophil surface VLA-3 and CD151 are responsible for endothelial damage regardless of substrata and are likely to be operative in all bodily tissues.

Conclusion:

This report identifies VLA-3 and CD151 on the activated human neutrophil, which are responsible for damage to endothelial function. Targeting these molecules in vivo may demonstrate preservation of organ function during critical illness.
Assuntos

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Assunto principal: Sepse / Integrina alfa3beta1 / Tetraspanina 24 / Neutrófilos Limite: Female / Humans / Male / Middle aged Idioma: En Revista: Shock Assunto da revista: ANGIOLOGIA / CARDIOLOGIA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Assunto principal: Sepse / Integrina alfa3beta1 / Tetraspanina 24 / Neutrófilos Limite: Female / Humans / Male / Middle aged Idioma: En Revista: Shock Assunto da revista: ANGIOLOGIA / CARDIOLOGIA Ano de publicação: 2024 Tipo de documento: Article