Your browser doesn't support javascript.
loading
Molecular insights into chronic atrophic gastritis treatment: Coptis chinensis Franch studied via network pharmacology, molecular dynamics simulation and experimental analysis.
Hu, Chengxiang; Cao, Fuyan; Jiang, Yongxin; Liu, Kaifeng; Li, Tao; Gao, Yin; Li, Wannan; Han, Weiwei.
Afiliação
  • Hu C; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
  • Cao F; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
  • Jiang Y; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
  • Liu K; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
  • Li T; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
  • Gao Y; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China. Electronic address: yingao@jlu.edu.cn.
  • Li W; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China. Electronic address: liwannan@jlu.edu.cn.
  • Han W; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China. Electronic address: weiweihan@jlu.edu.cn.
Comput Biol Med ; 178: 108804, 2024 Jun 27.
Article em En | MEDLINE | ID: mdl-38941899
ABSTRACT
Chronic atrophic gastritis (CAG), characterized by inflammation and erosion of the gastric lining, is a prevalent digestive disorder and considered a precursor to gastric cancer (GC). Coptis chinensis France (CCF) is renowned for its potent heat-clearing, detoxification, and anti-inflammatory properties. Zuojin Pill (ZJP), a classic Chinese medicine primarily composed of CCF, has demonstrated effectiveness in CAG treatment. This study aims to elucidate the potential mechanism of CCF treatment for CAG through a multifaceted approach encompassing network pharmacology, molecular docking, molecular dynamics simulation and experimental verification. The study identified three major active compounds of CCF and elucidated key pathways, such as TNF signaling, PI3K-Akt signaling and p53 signaling. Molecular docking revealed interactions between these active compounds and pivotal targets like PTGS2, TNF, MTOR, and TP53. Additionally, molecular dynamics simulation validated berberine as the primary active compound of CCF, which was further confirmed through experimental verification. This study not only identified berberine as the primary active compound of CCF but also provided valuable insights into the molecular mechanisms underlying CCF's efficacy in treating CAG. Furthermore, it offers a reference for refining therapeutic strategies for CAG management.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Idioma: En Revista: Comput Biol Med Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Idioma: En Revista: Comput Biol Med Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China