Your browser doesn't support javascript.
loading
Prediction of Anastomotic Leakage in Esophageal Cancer Surgery: A Multimodal Machine Learning Model Integrating Imaging and Clinical Data.
Klontzas, Michail E; Ri, Motonari; Koltsakis, Emmanouil; Stenqvist, Erik; Kalarakis, Georgios; Boström, Erik; Kechagias, Aristotelis; Schizas, Dimitrios; Rouvelas, Ioannis; Tzortzakakis, Antonios.
Afiliação
  • Klontzas ME; Department for Clinical Science, Intervention and Technology (CLINTEC), Division of Radiology, Karolinska Institutet, Stockholm, Sweden; Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece; Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for
  • Ri M; Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Surgery and Oncology, Karolinska Institutet, Solna, Sweden; Department of Upper Abdominal Diseases, Karolinska University Hospital, Huddinge, Stockholm, Sweden.
  • Koltsakis E; Department for Clinical Science, Intervention and Technology (CLINTEC), Division of Radiology, Karolinska Institutet, Stockholm, Sweden; Department of Diagnostic Radiology, Karolinska University Hospital, Stockholm, Sweden.
  • Stenqvist E; Department of Diagnostic Radiology, Karolinska University Hospital, Stockholm, Sweden.
  • Kalarakis G; Department for Clinical Science, Intervention and Technology (CLINTEC), Division of Radiology, Karolinska Institutet, Stockholm, Sweden; Department of Radiology, School of Medicine, University of Crete, Voutes Campus, Heraklion, Greece; Department of Diagnostic Radiology, Karolinska University Hospi
  • Boström E; Department of Diagnostic Radiology, Karolinska University Hospital, Stockholm, Sweden.
  • Kechagias A; Department of Digestive Surgery, Kanta-Häme Central Hospital, Hämeenlinna 13530, Finland.
  • Schizas D; First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens 115-27, Greece.
  • Rouvelas I; Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Surgery and Oncology, Karolinska Institutet, Solna, Sweden; Department of Upper Abdominal Diseases, Karolinska University Hospital, Huddinge, Stockholm, Sweden.
  • Tzortzakakis A; Department for Clinical Science, Intervention and Technology (CLINTEC), Division of Radiology, Karolinska Institutet, Stockholm, Sweden; Medical Radiation Physics and Nuclear Medicine, Section for Nuclear Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden. Electronic address: anto
Acad Radiol ; 2024 Jul 01.
Article em En | MEDLINE | ID: mdl-38955594
ABSTRACT
RATIONALE AND

OBJECTIVES:

Surgery in combination with chemo/radiotherapy is the standard treatment for locally advanced esophageal cancer. Even after the introduction of minimally invasive techniques, esophagectomy carries significant morbidity and mortality. One of the most common and feared complications of esophagectomy is anastomotic leakage (AL). Our work aimed to develop a multimodal machine-learning model combining CT-derived and clinical data for predicting AL following esophagectomy for esophageal cancer. MATERIAL AND

METHODS:

A total of 471 patients were prospectively included (Jan 2010-Dec 2022). Preoperative computed tomography (CT) was used to evaluate celia trunk stenosis and vessel calcification. Clinical variables, including demographics, disease stage, operation details, postoperative CRP, and stage, were combined with CT data to build a model for AL prediction. Data was split into 80%20% for training and testing, and an XGBoost model was developed with 10-fold cross-validation and early stopping. ROC curves and respective areas under the curve (AUC), sensitivity, specificity, PPV, NPV, and F1-scores were calculated.

RESULTS:

A total of 117 patients (24.8%) exhibited post-operative AL. The XGboost model achieved an AUC of 79.2% (95%CI 69%-89.4%) with a specificity of 77.46%, a sensitivity of 65.22%, PPV of 48.39%, NPV of 87.3%, and F1-score of 56%. Shapley Additive exPlanation analysis showed the effect of individual variables on the result of the model. Decision curve analysis showed that the model was particularly beneficial for threshold probabilities between 15% and 48%.

CONCLUSION:

A clinically relevant multimodal model can predict AL, which is especially valuable in cases with low clinical probability of AL.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Temas: Geral / Tipos_de_cancer / Esofago / Tratamento / Cirurgia_oncologica Base de dados: MEDLINE Idioma: En Revista: Acad Radiol Assunto da revista: RADIOLOGIA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Temas: Geral / Tipos_de_cancer / Esofago / Tratamento / Cirurgia_oncologica Base de dados: MEDLINE Idioma: En Revista: Acad Radiol Assunto da revista: RADIOLOGIA Ano de publicação: 2024 Tipo de documento: Article