Your browser doesn't support javascript.
loading
Low-Intensity Ultrasound Tibial Nerve Stimulation Suppresses Bladder Activity in Rats.
He, Zitian; Liu, Qinggang; Yang, Ruiyao; Zhou, Yongheng; Liu, Xin; Deng, Han; Cong, Huiling; Liu, Yixi; Liao, Limin.
Afiliação
  • He Z; Department of Rehabilitation, Yuying Children's Hospital, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Urology, China Rehabilitation Research Center, Beijing, China; The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhe
  • Liu Q; Department of Urology, China Rehabilitation Research Center, Beijing, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; University of Health and Rehabilitation Sciences, Qingdao, Shandong, China.
  • Yang R; Department of Urology, China Rehabilitation Research Center, Beijing, China.
  • Zhou Y; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Urology, China Rehabilitation Research Center, Beijing, China; University of Health and Rehabilitation Sciences, Qingdao, Shandong, China.
  • Liu X; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Urology, China Rehabilitation Research Center, Beijing, China; University of Health and Rehabilitation Sciences, Qingdao, Shandong, China.
  • Deng H; Department of Urology, China Rehabilitation Research Center, Beijing, China; School of Rehabilitation, Capital Medical University, Beijing, China.
  • Cong H; Department of Urology, China Rehabilitation Research Center, Beijing, China; School of Rehabilitation, Capital Medical University, Beijing, China.
  • Liu Y; Department of Urology, China Rehabilitation Research Center, Beijing, China; School of Rehabilitation, Capital Medical University, Beijing, China.
  • Liao L; Department of Rehabilitation, Yuying Children's Hospital, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Urology, China Rehabilitation Research Center, Beijing, China; The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhe
Neuromodulation ; 2024 Jul 27.
Article em En | MEDLINE | ID: mdl-39078346
ABSTRACT
BACKGROUND AND

OBJECTIVE:

Noninvasive neuromodulation, particularly through low-intensity ultrasound, holds promise in the fields of neuroscience and neuro-engineering. Ultrasound can stimulate the central nervous system to treat neurologic disorders of the brain and activate peripheral nerve activity. The aim of this study is to investigate the inhibitory effect of low-intensity ultrasonic tibial nerve stimulation on both the physiological state and the overactive bladder (OAB) model in rats. MATERIALS AND

METHODS:

A total of 28 female Sprague-Dawley rats were used in this study. Continuous transurethral instillation of 0.9% normal saline into the bladder was initially performed to stimulate physiological bladder activity. Subsequently, a solution containing 0.3% acetic acid dissolved in saline was instilled to induce rat models of OAB. The study comprised two phases initial observation of bladder response to low-intensity ultrasound (1 MHz, 1 W/cm2, 50% duty cycle) in seven rats; subsequent exploration of ultrasound frequency (3 MHz) and intensity (2 W/cm2 and 3 W/cm2) effects in 21 rats. The intercontraction intervals (ICIs) were the primary outcome measure. Histologic analysis of tibial nerves and surrounding muscle tissues determined safe ultrasound parameters.

RESULTS:

Low-intensity ultrasound tibial nerve stimulation significantly inhibited normal and OAB activity. Ultrasound stimulation at 1 MHz, 1 W/cm2, with a 50% duty cycle significantly prolonged the ICI in both normal (p < 0.0001) and OAB rats (p < 0.01), as did transitioning to a 3 MHz frequency (p = 0.001 for normal rats; p < 0.01 for OAB rats). Similarly, at an intensity of 2 W/cm2 and 1 MHz frequency with a 50% duty cycle, ultrasound stimulation significantly prolonged the ICI in both normal (p < 0.01) and OAB rats (p < 0.005). Furthermore, switching to a 3 W/cm2 ultrasound intensity also significantly extended the ICI in both normal (p < 0.05) and OAB rats (p = 0.01). However, after different ultrasound intensities and frequencies, there was no statistical difference in ICI ratios (preultrasound stimulation vs postultrasound stimulation/preultrasound stimulation ∗ 100%) in all rats (p > 0.05). Low-intensity ultrasound tibial nerve stimulation did not influence baseline pressure, threshold pressure, or maximum pressure. In addition, a latency period in bladder reflex inhibition was induced by low-intensity ultrasound tibial nerve stimulation in some rats. Histologic analysis indicated no evident nerve or muscle tissue damage or abnormalities.

CONCLUSIONS:

This study confirmed the potential of transcutaneous ultrasound tibial nerve stimulation to improve bladder function. According to the findings, the ultrasonic intensities ranging from 1 to 3 W/cm2 and frequencies of 1 MHz and 3 MHz are both feasible and safe treatment parameters. This study portended the promise of low-intensity ultrasound tibial nerve stimulation as a treatment for OAB and provides a basis and reference for future clinical applications.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Idioma: En Revista: Neuromodulation Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Idioma: En Revista: Neuromodulation Ano de publicação: 2024 Tipo de documento: Article