Your browser doesn't support javascript.
loading
Propagation and evaporation of contaminated droplets, emission and exposure in surgery environments revealed by laser visualization and numerical characterization.
Li, Xiujie; Mak, Cheuk Ming; Ai, Zhengtao; Ma, Kuen Wai; Wong, Hai Ming.
Afiliação
  • Li X; Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
  • Mak CM; Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
  • Ai Z; Department of Building Environment and Energy, College of Civil Engineering, Hunan University, Changsha 410082, China.
  • Ma KW; Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
  • Wong HM; Faculty of Dentistry, The University of Hong Kong, Hong Kong, China. Electronic address: wonghmg@hku.hk.
J Hazard Mater ; 477: 135338, 2024 Sep 15.
Article em En | MEDLINE | ID: mdl-39084008
ABSTRACT
The contaminated liquid mixture containing mucosalivary fluid and blood would be aerosolized during medical procedures, resulting in higher-risk exposures. The novelty of this research is integrating laser visualization and numerical characterization to assess the propagation and evaporation of contaminated droplets, and the interactive effects of humidity and temperature on exposure risks will be numerically evaluated in surgery environments. The numerical model evidenced by experiments can predict the mass balance of ejection droplets, the minimum required fallow time (FT) between appointments, and the disinfection region of greatest concern. Around 98.4 % of the ejection droplet mass will be removed after the cessation of ultrasonic scaling, while the initial droplet size smaller than 72.6µm will dehydrate and become airborne. The FT recommendation of 30 min is not over-cautious, and the extended FT (range of 28-37 min) should be instituted for low temperature (20.5 °C) and high humidity levels (60 %RH). The variation of the temperature and humidity in the range for human thermal comfort has little influence on the area of the disinfection region (0.15m2) and the cut-off size (72.6µm) of droplet deposition and suspension. This research can provide scientific evidence for the guidelines of environmental conditions in surgery rooms.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Assunto principal: Umidade Limite: Humans Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Assunto principal: Umidade Limite: Humans Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China