Your browser doesn't support javascript.
loading
MFN2-mediated decrease in mitochondria-associated endoplasmic reticulum membranes contributes to sunitinib-induced endothelial dysfunction and hypertension.
Qu, Yao; Liu, Zhi-Xue; Zheng, Xiao-Xu; Wu, Sheng-Nan; An, Jun-Qing; Zou, Ming-Hui; Zhang, Zhi-Ren.
Afiliação
  • Qu Y; Department of Cardiology, Harbin Medical University Cancer Hospital, NHC Key Laboratory of Cell Transplantation, Department of Cardiology, Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Institute of Metabolic Disease, Heilongjiang Academy of Medical Sciences, Heilong
  • Liu ZX; Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA.
  • Zheng XX; Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA.
  • Wu SN; Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA.
  • An JQ; Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA.
  • Zou MH; Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China; Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA. Electronic address: mzou@gsu.edu.
  • Zhang ZR; Department of Cardiology, Harbin Medical University Cancer Hospital, NHC Key Laboratory of Cell Transplantation, Department of Cardiology, Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Institute of Metabolic Disease, Heilongjiang Academy of Medical Sciences, Heilong
J Mol Cell Cardiol ; 200: 45-60, 2025 Mar.
Article em En | MEDLINE | ID: mdl-39848488
Treatment of cancer patients with tyrosine kinase inhibitors (TKIs) often results in hypertension, but the underlying mechanism remains unclear. This study aimed to examine the role of mitochondrial morphology and function, particularly mitochondria-associated endoplasmic reticulum membranes (MAMs), in sunitinib-induced hypertension. METHODS: Both in vitro and in vivo experiments performed to assesse reactive oxygen species (ROS), nitric oxide (NO), endothelium-dependent vasorelaxation, systemic blood pressure, and mitochondrial function in human umbilical vein endothelial cells (HUVECs) and C57BL/6 mouse aortic endothelial cells, under vehicle or sunitinib treatment condition. RESULTS: Sunitinib increased mitochondrial ROS accumulation, decreased oxygen consumption rate, ATP production, and mitochondrial calcium ([Ca2+]M) levels, and impaired endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) signaling in HUVECs. In addition, sunitinib also decreased mitochondrial membrane potential, elongated mitochondria, and reduced MAMs. Remarkably, these effects were reversed by an adeno-virus linker (Ad-linker) that reinforces MAMs. Engineered augmentation of MAMs using AAV-FLT1-linker significantly mitigated sunitinib-induced hypertension, by restoring endothelium-dependent relaxation in mice, highlighting the crucial role of MAMs in this process. Further analyses revealed that sunitinib enhanced Akt-mediated expression of mitofusin 2 (MFN2), causing mitochondrial elongation, and induced dephosphorylation of inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) at residues Y1737/Y1738, reducing [Ca2+]M. Our study suggests that increased MFN2 expression and IP3R1 dephosphorylation are critical in sunitinib-induced MAMs reduction and [Ca2+]M homeostasis. CONCLUSION: Sunitinib induces mitochondrial dysfunction, Akt/MFN2-mediated decrease in MAMs and mitochondrial elongation, and IP3R1 dephosphorylation in endothelial cells, leading to endothelial dysfunction and hypertension. Our results provide the potential therapeutic targets for combating TKI-induced hypertension.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Assunto principal: Endotélio Vascular / Proteínas Mitocondriais / Retículo Endoplasmático / Sunitinibe / GTP Fosfo-Hidrolases / Hipertensão / Membranas Intracelulares / Mitocôndrias Tipo de estudo: Etiology_studies / Risk_factors_studies Limite: Animals / Humans / Male Idioma: En Revista: J mol cell cardiol Ano de publicação: 2025 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Temas: Geral Base de dados: MEDLINE Assunto principal: Endotélio Vascular / Proteínas Mitocondriais / Retículo Endoplasmático / Sunitinibe / GTP Fosfo-Hidrolases / Hipertensão / Membranas Intracelulares / Mitocôndrias Tipo de estudo: Etiology_studies / Risk_factors_studies Limite: Animals / Humans / Male Idioma: En Revista: J mol cell cardiol Ano de publicação: 2025 Tipo de documento: Article