Your browser doesn't support javascript.
loading
Deep learning-based classification of parotid gland tumors: integrating dynamic contrast-enhanced MRI for enhanced diagnostic accuracy.
Sinci, Kazim Ayberk; Koska, Ilker Ozgur; Cetinoglu, Yusuf Kenan; Erdogan, Nezahat; Koc, Ali Murat; Eliyatkin, Nuket Ozkavruk; Koska, Cagan; Candan, Barkan.
Afiliação
  • Sinci KA; Department of Radiology, Kanuni Sultan Suleyman Education and Research Hospital, Istanbul, 34303, Türkiye. ayberksinci94@gmail.com.
  • Koska IO; Department of Radiology, Behcet Uz Children's Hospital, Izmir, Türkiye.
  • Cetinoglu YK; Department of Biomedical Technologies, Dokuz Eylül University Graduate School of Natural and Applied Sciences, Buca, Izmir, Türkiye.
  • Erdogan N; Department of Radiology, Behcet Uz Children's Hospital, Izmir, Türkiye.
  • Koc AM; Department of Radiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Türkiye.
  • Eliyatkin NO; Department of Radiology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Türkiye.
  • Koska C; Department of Pathology, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Türkiye.
  • Candan B; Department of Electrical Electronical Engineering, Yasar University, Bornova, Izmir, Türkiye.
BMC Med Imaging ; 25(1): 264, 2025 Jul 04.
Article em En | MEDLINE | ID: mdl-40615947
BACKGROUND: To evaluate the performance of deep learning models in classifying parotid gland tumors using T2-weighted, diffusion-weighted, and contrast-enhanced T1-weighted MR images, along with DCE data derived from time-intensity curves. METHODS: In this retrospective, single-center study including a total of 164 participants, 124 patients with surgically confirmed parotid gland tumors and 40 individuals with normal parotid glands underwent multiparametric MRI, including DCE sequences. Data partitions were performed at the patient level (80% training, 10% validation, 10% testing). Two deep learning architectures (MobileNetV2 and EfficientNetB0), as well as a combined approach integrating predictions from both models, were fine-tuned using transfer learning to classify (i) normal versus tumor (Task 1), (ii) benign versus malignant tumors (Task 2), and (iii) benign subtypes (Warthin tumor vs. pleomorphic adenoma) (Task 3). For Tasks 2 and 3, DCE-derived metrics were integrated via a support vector machine. Classification performance was assessed using accuracy, precision, recall, and F1-score, with 95% confidence intervals derived via bootstrap resampling. RESULTS: In Task 1, EfficientNetB0 achieved the highest accuracy (85%). In Task 2, the combined approach reached an accuracy of 65%, while adding DCE data significantly improved performance, with MobileNetV2 achieving an accuracy of 96%. In Task 3, EfficientNetB0 demonstrated the highest accuracy without DCE data (75%), while including DCE data boosted the combined approach to an accuracy of 89%. CONCLUSIONS: Adding DCE-MRI data to deep learning models substantially enhances parotid gland tumor classification accuracy, highlighting the value of functional imaging biomarkers in improving noninvasive diagnostic workflows.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Temas: Geral / Tipos_de_cancer / Boca Base de dados: MEDLINE Assunto principal: Neoplasias Parotídeas / Imageamento por Ressonância Magnética / Aprendizagem Profunda Tipo de estudo: Diagnostic_studies / Observational_studies / Risk_factors_studies Limite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Bmc med imaging Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2025 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Temas: Geral / Tipos_de_cancer / Boca Base de dados: MEDLINE Assunto principal: Neoplasias Parotídeas / Imageamento por Ressonância Magnética / Aprendizagem Profunda Tipo de estudo: Diagnostic_studies / Observational_studies / Risk_factors_studies Limite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Bmc med imaging Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2025 Tipo de documento: Article