Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Water Res ; 256: 121526, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583333

RESUMO

The presence of Ag(I) and Pb(II) ions in wastewater poses a significant threat to human health in contemporary times. This study aims to explore the development of a novel and economical adsorbent by grafting MnO2 particles onto low-rank coal, providing an innovative solution for the remediation of water contaminated with silver and lead. The synthesized nanocomposites, referred to as MnO2-Coal, underwent thorough characterization using FTIR, XRD, BET, and SEM to highlight the feasibility of in-situ surface modification of coal with MnO2 nanoparticles. The adsorption of Ag(I) and Pb(II) from their respective aqueous solution onto MnO2-Coal was systematically investigated, with optimization of key parameters such as pH, temperature, initial concentration, contact time, ionic strength, and competing ions. Remarkably adsorption equilibrium was achieved within a 10 min, resulting in impressive removal rates of 80-90 % for both Ag(I) and Pb(II) at pH 6. The experimental data were evaluated using Langmuir, Freundlich, and Temkin isotherm models. The Langmuir isotherm model proved to be more accurate in representing the adsorption of Ag(I) and Pb(II) ions onto MnO2-Coal, exhibiting high regression coefficients (R2 = 0.99) and maximum adsorption capacities of 93.57 and 61.98 mg/g, along with partition coefficients of 4.53 and 71.92 L/g for Ag(I) and Pb(II), respectively, at 293 K. Kinetic assessments employing PFO, PSO, Elovich, and IPD models indicated that the PFO and PSO models were most suitable for adsorption mechanism of Pb(II) and Ag(I) on MnO2-Coal composites, respectively. Moreover, thermodynamic evaluation revealed the spontaneous and endothermic adsorption process for Ag(I), while exothermic behavior for adsorption of Pb(II). Importantly, this approach not only demonstrates cost-effectiveness but also environmental friendliness in treating heavy metal-contamination in water. The research suggests the potential of MnO2-Coal composites as efficient and sustainable adsorbents for water purification applications.


Assuntos
Chumbo , Compostos de Manganês , Óxidos , Prata , Águas Residuárias , Poluentes Químicos da Água , Prata/química , Chumbo/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Adsorção , Compostos de Manganês/química , Óxidos/química , Carvão Mineral , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Cinética
2.
Sensors (Basel) ; 23(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687979

RESUMO

Concrete is a widely used construction material, demanding strict quality control to maintain its integrity. The durability and lifespan of concrete structures rely heavily, amongst other factors, on the characteristics of fresh and early age concrete, which are strongly dependent on the curing process. To ensure long-term durability, it is crucial to assess concrete properties throughout construction and verify compliance with design specifications. Currently, electrical resistivity-based sensors are available and used for quality control and monitoring, however, these sensors tend to be costly or only measure at a single location within the concrete cover. This study introduces a printed circuit board (PCB)-based array of electrodes capable of measuring concrete resistivity profiles across the concrete cover, from its fresh state to early age development. In this work, the feasibility of such resistivity PCB-sensors, novel for concrete, is evaluated under laboratory conditions. The sensors exhibit a promising performance in monitoring the efficiency of concrete curing under various conditions. Additionally, they successfully evaluate the effectiveness of internal curing (in our study, promoted by superabsorbent polymers) during the initial stages of hardening. This sensor array provides a valuable tool for monitoring the curing of concrete at early age, and showcases a preliminary solution that could be further developed to ensure long-term performance of concrete infrastructure.

3.
Int J Biol Macromol ; 231: 123269, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36649873

RESUMO

This study was aimed to develop low-cost bacterial cellulose (BC)-based antibacterial composite with pomegranate (Punica granatum L.) peel extract (PGPE) for potential biomedical applications. BC was cost-effectively produced by utilizing food wastes, and PGPE was ex situ impregnated into its hydrogel. Field-emission scanning electron microscopic (FE-SEM) observation showed a nanofibrous and microporous morphology of pristine BC and confirmed the development of BC-PGPE composite. Fourier transform infrared (FTIR) spectroscopy indicated the chemical interaction of PGPE with BC nanofibers. BC-PGPE composite held 97 % water of its dry weight and retained it for more than 48 h. The BC-PGPE composite exhibited better reswelling capabilities than pristine BC after three consecutive re-wetting cycles. The antibacterial activity of the BC-PGPE composite was determined via minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), disc diffusion, and plate count methods. The PGPE extract showed good antimicrobial activity against Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative), both in the form of extract and composite with BC, with relatively better activity against the former. The BC-PGPE composite produced a 17 mm zone of inhibition against S. aureus, while no inhibition zone was formed against E. coli. Furthermore, BC-PGPE composite caused a 100 % and 50 % reduction in the growth of S. aureus and E. coli, respectively. The findings of this study indicate that BC-PGPE composite could be a promising antibacterial wound dressing material.


Assuntos
Punica granatum , Celulose/química , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Microscopia Eletrônica de Varredura , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA