Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
BMC Public Health ; 22(1): 716, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410184

RESUMO

BACKGROUND: The COVID-19 epidemic has differentially impacted communities across England, with regional variation in rates of confirmed cases, hospitalisations and deaths. Measurement of this burden changed substantially over the first months, as surveillance was expanded to accommodate the escalating epidemic. Laboratory confirmation was initially restricted to clinical need ("pillar 1") before expanding to community-wide symptomatics ("pillar 2"). This study aimed to ascertain whether inconsistent measurement of case data resulting from varying testing coverage could be reconciled by drawing inference from COVID-19-related deaths. METHODS: We fit a Bayesian spatio-temporal model to weekly COVID-19-related deaths per local authority (LTLA) throughout the first wave (1 January 2020-30 June 2020), adjusting for the local epidemic timing and the age, deprivation and ethnic composition of its population. We combined predictions from this model with case data under community-wide, symptomatic testing and infection prevalence estimates from the ONS infection survey, to infer the likely trajectory of infections implied by the deaths in each LTLA. RESULTS: A model including temporally- and spatially-correlated random effects was found to best accommodate the observed variation in COVID-19-related deaths, after accounting for local population characteristics. Predicted case counts under community-wide symptomatic testing suggest a total of 275,000-420,000 cases over the first wave - a median of over 100,000 additional to the total confirmed in practice under varying testing coverage. This translates to a peak incidence of around 200,000 total infections per week across England. The extent to which estimated total infections are reflected in confirmed case counts was found to vary substantially across LTLAs, ranging from 7% in Leicester to 96% in Gloucester with a median of 23%. CONCLUSIONS: Limitations in testing capacity biased the observed trajectory of COVID-19 infections throughout the first wave. Basing inference on COVID-19-related mortality and higher-coverage testing later in the time period, we could explore the extent of this bias more explicitly. Evidence points towards substantial under-representation of initial growth and peak magnitude of infections nationally, to which different parts of the country contribute unequally.


Assuntos
COVID-19 , Teorema de Bayes , COVID-19/epidemiologia , Efeitos Psicossociais da Doença , Humanos , Armazenamento e Recuperação da Informação , SARS-CoV-2
2.
BMC Med ; 20(1): 86, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35184736

RESUMO

BACKGROUND: Forecasting healthcare demand is essential in epidemic settings, both to inform situational awareness and facilitate resource planning. Ideally, forecasts should be robust across time and locations. During the COVID-19 pandemic in England, it is an ongoing concern that demand for hospital care for COVID-19 patients in England will exceed available resources. METHODS: We made weekly forecasts of daily COVID-19 hospital admissions for National Health Service (NHS) Trusts in England between August 2020 and April 2021 using three disease-agnostic forecasting models: a mean ensemble of autoregressive time series models, a linear regression model with 7-day-lagged local cases as a predictor, and a scaled convolution of local cases and a delay distribution. We compared their point and probabilistic accuracy to a mean-ensemble of them all and to a simple baseline model of no change from the last day of admissions. We measured predictive performance using the weighted interval score (WIS) and considered how this changed in different scenarios (the length of the predictive horizon, the date on which the forecast was made, and by location), as well as how much admissions forecasts improved when future cases were known. RESULTS: All models outperformed the baseline in the majority of scenarios. Forecasting accuracy varied by forecast date and location, depending on the trajectory of the outbreak, and all individual models had instances where they were the top- or bottom-ranked model. Forecasts produced by the mean-ensemble were both the most accurate and most consistently accurate forecasts amongst all the models considered. Forecasting accuracy was improved when using future observed, rather than forecast, cases, especially at longer forecast horizons. CONCLUSIONS: Assuming no change in current admissions is rarely better than including at least a trend. Using confirmed COVID-19 cases as a predictor can improve admissions forecasts in some scenarios, but this is variable and depends on the ability to make consistently good case forecasts. However, ensemble forecasts can make forecasts that make consistently more accurate forecasts across time and locations. Given minimal requirements on data and computation, our admissions forecasting ensemble could be used to anticipate healthcare needs in future epidemic or pandemic settings.


Assuntos
COVID-19 , Previsões , Hospitais , Humanos , Pandemias , SARS-CoV-2 , Medicina Estatal
3.
Lancet Reg Health Am ; 5: None, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35098203

RESUMO

BACKGROUND: Brazil is one of the countries worst affected by the COVID-19 pandemic with over 20 million cases and 557,000 deaths reported by August 2021. Comparison of real-time local COVID-19 data between areas is essential for understanding transmission, measuring the effects of interventions, and predicting the course of the epidemic, but are often challenging due to different population sizes and structures. METHODS: We describe the development of a new app for the real-time visualisation of COVID-19 data in Brazil at the municipality level. In the CLIC-Brazil app, daily updates of case and death data are downloaded, age standardised and used to estimate the effective reproduction number (Rt ). We show how such platforms can perform real-time regression analyses to identify factors associated with the rate of initial spread and early reproduction number. We also use survival methods to predict the likelihood of occurrence of a new peak of COVID-19 incidence. FINDINGS: After an initial introduction in São Paulo and Rio de Janeiro states in early March 2020, the epidemic spread to northern states and then to highly populated coastal regions and the Central-West. Municipalities with higher metrics of social development experienced earlier arrival of COVID-19 (decrease of 11·1 days [95% CI:8.9,13.2] in the time to arrival for each 10% increase in the social development index). Differences in the initial epidemic intensity (mean Rt ) were largely driven by geographic location and the date of local onset. INTERPRETATION: This study demonstrates that platforms that monitor, standardise and analyse the epidemiological data at a local level can give useful real-time insights into outbreak dynamics that can be used to better adapt responses to the current and future pandemics. FUNDING: This project was supported by a Medical Research Council UK (MRC-UK) -São Paulo Research Foundation (FAPESP) CADDE partnership award (MR/S0195/1 and FAPESP 18/14389-0).

4.
medRxiv ; 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34704097

RESUMO

BACKGROUND: Forecasting healthcare demand is essential in epidemic settings, both to inform situational awareness and facilitate resource planning. Ideally, forecasts should be robust across time and locations. During the COVID-19 pandemic in England, it is an ongoing concern that demand for hospital care for COVID-19 patients in England will exceed available resources. METHODS: We made weekly forecasts of daily COVID-19 hospital admissions for National Health Service (NHS) Trusts in England between August 2020 and April 2021 using three disease-agnostic forecasting models: a mean ensemble of autoregressive time series models, a linear regression model with 7-day-lagged local cases as a predictor, and a scaled convolution of local cases and a delay distribution. We compared their point and probabilistic accuracy to a mean-ensemble of them all, and to a simple baseline model of no change from the last day of admissions. We measured predictive performance using the Weighted Interval Score (WIS) and considered how this changed in different scenarios (the length of the predictive horizon, the date on which the forecast was made, and by location), as well as how much admissions forecasts improved when future cases were known. RESULTS: All models outperformed the baseline in the majority of scenarios. Forecasting accuracy varied by forecast date and location, depending on the trajectory of the outbreak, and all individual models had instances where they were the top- or bottom-ranked model. Forecasts produced by the mean-ensemble were both the most accurate and most consistently accurate forecasts amongst all the models considered. Forecasting accuracy was improved when using future observed, rather than forecast, cases, especially at longer forecast horizons. CONCLUSIONS: Assuming no change in current admissions is rarely better than including at least a trend. Using confirmed COVID-19 cases as a predictor can improve admissions forecasts in some scenarios, but this is variable and depends on the ability to make consistently good case forecasts. However, ensemble forecasts can make forecasts that make consistently more accurate forecasts across time and locations. Given minimal requirements on data and computation, our admissions forecasting ensemble could be used to anticipate healthcare needs in future epidemic or pandemic settings.

5.
J Youth Adolesc ; 48(12): 2432-2450, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31385232

RESUMO

Insight into the characteristics and system experiences for youth who touch both the child welfare and juvenile justice systems has increased over the last decade. These youth are typically studied as one population and referred to as "crossover youth." While this literature contributes valuable insight into who crossover youth are, studies are virtually silent on distinguishing characteristics and experiences across different pathways leading to dual system contact. This study reviews what is currently known about dual system youth generally (i.e., youth who have contact with both the juvenile justice and child welfare systems) and introduces a framework for consistently defining dual system youth and their pathways. The utility of the framework is then explored using linked administrative data for cohorts of youth aged 10 to 18 years old with a first petition to delinquency court in three sites: Cook County, Illinois between 2010 and 2014 (N = 14,170); Cuyahoga County, Ohio between 2010 and 2014 (N = 11,441); and New York City between 2013 and 2014 (N = 1272). The findings show a high prevalence of dual system contact overall, ranging from 44.8 to 70.3%, as well as wide variation in the ways in which youth touched both systems. Specifically, non-concurrent system contact is more prevalent than concurrent system contact in all sites, and individual characteristics and system experiences vary within and across these different pathway groups. Based on study findings, implications for future research on dual system youth and for developing collaborative practices and policies across the systems are discussed.


Assuntos
Proteção da Criança/estatística & dados numéricos , Delinquência Juvenil/estatística & dados numéricos , Saúde Mental/estatística & dados numéricos , Seguridade Social/estatística & dados numéricos , Adolescente , Comportamento do Adolescente/psicologia , Criança , Direito Penal , Feminino , Humanos , Illinois , Incidência , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA