RESUMO
The chemicals formed from antipyrines are flexible organic building blocks that are employed in the development of pharmaceuticals. By diazotizing (4-arylazo-3-hydroxy-2-thienyl) 4-antipyrine ketones 1a, 1b and 1c and (4-arylazo-3-methyl-2-thienyl) 4-antipyrine ketones (2a, 2b and 2c) further replaced with six other coupling components, a broad spectrum of hybrid molecules have been created. Mass spectra, NMR, FTIR, and elemental analyses have all been used to confirm the structures of the synthesised compounds. The antimicrobial screening was investigated by agar well diffusion and diluting the broth technique against both Gram-negative and positive-tested bacterial strains. (3-methyl-5-(phenylamino)-4-(4-tolylazo)-2-thienyl) 4-antipyrine ketone (2a) was found to be superior to Ciprofloxacin against test strains: Acinetobacter sp (34.33±1.15â mm), Listeria monocytogenes (29.33±1.15â mm) and Streptococcus sp. (19.33±1.15 mm). Also, good to moderate activities were expressed as minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) which were recorded at 9±1 to 59.67±4.51â µg/mL and 16±4 to >512â µg/mL, respectively, using compounds 2a, 2b, and 2c. MBC/MIC ratio showed, that only, 2a and 2b have a bactericidal effect but other antipyrines with bacteriostatic strength. To conclude, it was suggested that the use of these novel synthesized (4-arylazo-3-methyl-2-thienyl) 4-antipyrine ketone derivatives molecules as a new chemical class of antimicrobial agents to perform new drug discovery in pharmaceutical preparations and medicinal research.
Assuntos
Antibacterianos , Desenho de Fármacos , Cetonas , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Cetonas/química , Cetonas/farmacologia , Cetonas/síntese química , Antipirina/farmacologia , Antipirina/química , Antipirina/análogos & derivados , Antipirina/síntese química , Relação Estrutura-Atividade , Estrutura Molecular , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacosRESUMO
The photophysical and electrochemical properties of new targeted 2-cyanoacetanilide-based dyes are illustrated. New cyanoacetanilides SA7-10 were synthesized and employed as co-sensitizers in DSSCs. The chemical structures of these 2-cyanoacetanilides differ according to the substituent at the benzene ring (-H, -Me, -OMe and -NEt2), with the anchoring moiety being the same, a -COOH group. Furthermore, a density functional theory (DFT) calculation has shown an effective intermolecular charge transfer character, the HOMOs of SA7-10 are mainly located on the corresponding donor part, and their LUMOs are located on carboxylic acid moieties as the acceptor. Interestingly, using photosensitizers SA7-10 as co-sensitizers with HD-2 dye causes an improvement in their photovoltaic performances. Among the dyes, SA10 co-sensitized with HD-2 displayed an overall efficiency of 8.25%, a JSC of 19.5 mA cm-2, a VOC of 0.65 V and an FF of 64.35 compared to 7.46%, 19 mA cm-2, 0.64 V and 60.54, respectively, of HD-2 only. Moreover, the electrochemical impedance spectroscopy (EIS) data of SA7-10 and HD-2 were found to be in accordance with the obtained photovoltaic parameters. Finally, the results indicated that 2-cyanoacetanilide-based dyes were utilized as promising co-sensitizers due to their easy preparation methods and their relatively small size.