Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
2.
Int J Food Microbiol ; 257: 80-90, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28646670

RESUMO

Microbial food-borne diseases are still frequently reported despite the implementation of microbial quality legislation to improve food safety. Among all the microbial agents, viruses are the most important causative agents of food-borne outbreaks. The development and application of a new generation of sequencing techniques to test for viral contaminants in fresh produce is an unexplored field that allows for the study of the viral populations that might be transmitted by the fecal-oral route through the consumption of contaminated food. To advance this promising field, parsley was planted and grown under controlled conditions and irrigated using contaminated river water. Viruses polluting the irrigation water and the parsley leaves were studied by using metagenomics. To address possible contamination due to sample manipulation, library preparation, and other sources, parsley plants irrigated with nutritive solution were used as a negative control. In parallel, viruses present in the river water used for plant irrigation were analyzed using the same methodology. It was possible to assign viral taxons from 2.4 to 74.88% of the total reads sequenced depending on the sample. Most of the viral reads detected in the river water were related to the plant viral families Tymoviridae (66.13%) and Virgaviridae (14.45%) and the phage viral families Myoviridae (5.70%), Siphoviridae (5.06%), and Microviridae (2.89%). Less than 1% of the viral reads were related to viral families that infect humans, including members of the Adenoviridae, Reoviridae, Picornaviridae and Astroviridae families. On the surface of the parsley plants, most of the viral reads that were detected were assigned to the Dicistroviridae family (41.52%). Sequences related to important viral pathogens, such as the hepatitis E virus, several picornaviruses from species A and B as well as human sapoviruses and GIV noroviruses were detected. The high diversity of viral sequences found in the parsley plants suggests that irrigation on fecally-tainted food may have a role in the transmission of a wide diversity of viral families. This finding reinforces the idea that the best way to avoid food-borne viral diseases is to introduce good field irrigation and production practices. New strains have been identified that are related to the Picornaviridae and distantly related to the Hepeviridae family. However, the detection of a viral genome alone does not necessarily indicate there is a risk of infection or disease development. Thus, further investigation is crucial for correlating the detection of viral metagenomes in samples with the risk of infection. There is also an urgent need to develop new methods to improve the sensitivity of current Next Generation Sequencing (NGS) techniques in the food safety area.


Assuntos
Vírus de DNA/classificação , Vírus de DNA/isolamento & purificação , Contaminação de Alimentos/análise , Doenças Transmitidas por Alimentos/virologia , Petroselinum/virologia , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Poluição da Água/análise , Surtos de Doenças , Fezes/virologia , Alimentos/virologia , Inocuidade dos Alimentos , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenoma/genética , Metagenômica , Vírus de RNA/genética , Rios/virologia
3.
Genome Res ; 10(10): 1631-42, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11042160

RESUMO

One of the first useful products from the human genome will be a set of predicted genes. Besides its intrinsic scientific interest, the accuracy and completeness of this data set is of considerable importance for human health and medicine. Though progress has been made on computational gene identification in terms of both methods and accuracy evaluation measures, most of the sequence sets in which the programs are tested are short genomic sequences, and there is concern that these accuracy measures may not extrapolate well to larger, more challenging data sets. Given the absence of experimentally verified large genomic data sets, we constructed a semiartificial test set comprising a number of short single-gene genomic sequences with randomly generated intergenic regions. This test set, which should still present an easier problem than real human genomic sequence, mimics the approximately 200kb long BACs being sequenced. In our experiments with these longer genomic sequences, the accuracy of GENSCAN, one of the most accurate ab initio gene prediction programs, dropped significantly, although its sensitivity remained high. Conversely, the accuracy of similarity-based programs, such as GENEWISE, PROCRUSTES, and BLASTX was not affected significantly by the presence of random intergenic sequence, but depended on the strength of the similarity to the protein homolog. As expected, the accuracy dropped if the models were built using more distant homologs, and we were able to quantitatively estimate this decline. However, the specificities of these techniques are still rather good even when the similarity is weak, which is a desirable characteristic for driving expensive follow-up experiments. Our experiments suggest that though gene prediction will improve with every new protein that is discovered and through improvements in the current set of tools, we still have a long way to go before we can decipher the precise exonic structure of every gene in the human genome using purely computational methodology.


Assuntos
Biologia Computacional/métodos , DNA/química , DNA/genética , Genes/genética , Composição de Bases , Cromossomos Artificiais/química , Cromossomos Artificiais/genética , Humanos , Reprodutibilidade dos Testes , Software
4.
Genome Res ; 10(4): 483-501, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10779488

RESUMO

Computational methods for automated genome annotation are critical to our community's ability to make full use of the large volume of genomic sequence being generated and released. To explore the accuracy of these automated feature prediction tools in the genomes of higher organisms, we evaluated their performance on a large, well-characterized sequence contig from the Adh region of Drosophila melanogaster. This experiment, known as the Genome Annotation Assessment Project (GASP), was launched in May 1999. Twelve groups, applying state-of-the-art tools, contributed predictions for features including gene structure, protein homologies, promoter sites, and repeat elements. We evaluated these predictions using two standards, one based on previously unreleased high-quality full-length cDNA sequences and a second based on the set of annotations generated as part of an in-depth study of the region by a group of Drosophila experts. Although these standard sets only approximate the unknown distribution of features in this region, we believe that when taken in context the results of an evaluation based on them are meaningful. The results were presented as a tutorial at the conference on Intelligent Systems in Molecular Biology (ISMB-99) in August 1999. Over 95% of the coding nucleotides in the region were correctly identified by the majority of the gene finders, and the correct intron/exon structures were predicted for >40% of the genes. Homology-based annotation techniques recognized and associated functions with almost half of the genes in the region; the remainder were only identified by the ab initio techniques. This experiment also presents the first assessment of promoter prediction techniques for a significant number of genes in a large contiguous region. We discovered that the promoter predictors' high false-positive rates make their predictions difficult to use. Integrating gene finding and cDNA/EST alignments with promoter predictions decreases the number of false-positive classifications but discovers less than one-third of the promoters in the region. We believe that by establishing standards for evaluating genomic annotations and by assessing the performance of existing automated genome annotation tools, this experiment establishes a baseline that contributes to the value of ongoing large-scale annotation projects and should guide further research in genome informatics.


Assuntos
Biologia Computacional/métodos , Drosophila melanogaster/genética , Genes de Insetos , Genoma , Álcool Desidrogenase/química , Álcool Desidrogenase/genética , Animais , DNA Complementar , Bases de Dados Factuais/tendências , Drosophila melanogaster/enzimologia , Etiquetas de Sequências Expressas , Regiões Promotoras Genéticas/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA