Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
NPJ Digit Med ; 7(1): 6, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38200151

RESUMO

Social determinants of health (SDoH) play a critical role in patient outcomes, yet their documentation is often missing or incomplete in the structured data of electronic health records (EHRs). Large language models (LLMs) could enable high-throughput extraction of SDoH from the EHR to support research and clinical care. However, class imbalance and data limitations present challenges for this sparsely documented yet critical information. Here, we investigated the optimal methods for using LLMs to extract six SDoH categories from narrative text in the EHR: employment, housing, transportation, parental status, relationship, and social support. The best-performing models were fine-tuned Flan-T5 XL for any SDoH mentions (macro-F1 0.71), and Flan-T5 XXL for adverse SDoH mentions (macro-F1 0.70). Adding LLM-generated synthetic data to training varied across models and architecture, but improved the performance of smaller Flan-T5 models (delta F1 + 0.12 to +0.23). Our best-fine-tuned models outperformed zero- and few-shot performance of ChatGPT-family models in the zero- and few-shot setting, except GPT4 with 10-shot prompting for adverse SDoH. Fine-tuned models were less likely than ChatGPT to change their prediction when race/ethnicity and gender descriptors were added to the text, suggesting less algorithmic bias (p < 0.05). Our models identified 93.8% of patients with adverse SDoH, while ICD-10 codes captured 2.0%. These results demonstrate the potential of LLMs in improving real-world evidence on SDoH and assisting in identifying patients who could benefit from resource support.

2.
JAMA Netw Open ; 6(8): e2328280, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37561460

RESUMO

Importance: Sarcopenia is an established prognostic factor in patients with head and neck squamous cell carcinoma (HNSCC); the quantification of sarcopenia assessed by imaging is typically achieved through the skeletal muscle index (SMI), which can be derived from cervical skeletal muscle segmentation and cross-sectional area. However, manual muscle segmentation is labor intensive, prone to interobserver variability, and impractical for large-scale clinical use. Objective: To develop and externally validate a fully automated image-based deep learning platform for cervical vertebral muscle segmentation and SMI calculation and evaluate associations with survival and treatment toxicity outcomes. Design, Setting, and Participants: For this prognostic study, a model development data set was curated from publicly available and deidentified data from patients with HNSCC treated at MD Anderson Cancer Center between January 1, 2003, and December 31, 2013. A total of 899 patients undergoing primary radiation for HNSCC with abdominal computed tomography scans and complete clinical information were selected. An external validation data set was retrospectively collected from patients undergoing primary radiation therapy between January 1, 1996, and December 31, 2013, at Brigham and Women's Hospital. The data analysis was performed between May 1, 2022, and March 31, 2023. Exposure: C3 vertebral skeletal muscle segmentation during radiation therapy for HNSCC. Main Outcomes and Measures: Overall survival and treatment toxicity outcomes of HNSCC. Results: The total patient cohort comprised 899 patients with HNSCC (median [range] age, 58 [24-90] years; 140 female [15.6%] and 755 male [84.0%]). Dice similarity coefficients for the validation set (n = 96) and internal test set (n = 48) were 0.90 (95% CI, 0.90-0.91) and 0.90 (95% CI, 0.89-0.91), respectively, with a mean 96.2% acceptable rate between 2 reviewers on external clinical testing (n = 377). Estimated cross-sectional area and SMI values were associated with manually annotated values (Pearson r = 0.99; P < .001) across data sets. On multivariable Cox proportional hazards regression, SMI-derived sarcopenia was associated with worse overall survival (hazard ratio, 2.05; 95% CI, 1.04-4.04; P = .04) and longer feeding tube duration (median [range], 162 [6-1477] vs 134 [15-1255] days; hazard ratio, 0.66; 95% CI, 0.48-0.89; P = .006) than no sarcopenia. Conclusions and Relevance: This prognostic study's findings show external validation of a fully automated deep learning pipeline to accurately measure sarcopenia in HNSCC and an association with important disease outcomes. The pipeline could enable the integration of sarcopenia assessment into clinical decision making for individuals with HNSCC.


Assuntos
Aprendizado Profundo , Neoplasias de Cabeça e Pescoço , Sarcopenia , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Estudos Retrospectivos , Sarcopenia/diagnóstico por imagem , Sarcopenia/complicações , Neoplasias de Cabeça e Pescoço/complicações , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem
3.
medRxiv ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945519

RESUMO

Purpose: Sarcopenia is an established prognostic factor in patients diagnosed with head and neck squamous cell carcinoma (HNSCC). The quantification of sarcopenia assessed by imaging is typically achieved through the skeletal muscle index (SMI), which can be derived from cervical neck skeletal muscle (SM) segmentation and cross-sectional area. However, manual SM segmentation is labor-intensive, prone to inter-observer variability, and impractical for large-scale clinical use. To overcome this challenge, we have developed and externally validated a fully-automated image-based deep learning (DL) platform for cervical vertebral SM segmentation and SMI calculation, and evaluated the relevance of this with survival and toxicity outcomes. Materials and Methods: 899 patients diagnosed as having HNSCC with CT scans from multiple institutes were included, with 335 cases utilized for training, 96 for validation, 48 for internal testing and 393 for external testing. Ground truth single-slice segmentations of SM at the C3 vertebra level were manually generated by experienced radiation oncologists. To develop an efficient method of segmenting the SM, a multi-stage DL pipeline was implemented, consisting of a 2D convolutional neural network (CNN) to select the middle slice of C3 section and a 2D U-Net to segment SM areas. The model performance was evaluated using the Dice Similarity Coefficient (DSC) as the primary metric for the internal test set, and for the external test set the quality of automated segmentation was assessed manually by two experienced radiation oncologists. The L3 skeletal muscle area (SMA) and SMI were then calculated from the C3 cross sectional area (CSA) of the auto-segmented SM. Finally, established SMI cut-offs were used to perform further analyses to assess the correlation with survival and toxicity endpoints in the external institution with univariable and multivariable Cox regression. Results: DSCs for validation set (n = 96) and internal test set (n = 48) were 0.90 (95% CI: 0.90 - 0.91) and 0.90 (95% CI: 0.89 - 0.91), respectively. The predicted CSA is highly correlated with the ground-truth CSA in both validation (r = 0.99, p < 0.0001) and test sets (r = 0.96, p < 0.0001). In the external test set (n = 377), 96.2% of the SM segmentations were deemed acceptable by consensus expert review. Predicted SMA and SMI values were highly correlated with the ground-truth values, with Pearson r ß 0.99 (p < 0.0001) for both the female and male patients in all datasets. Sarcopenia was associated with worse OS (HR 2.05 [95% CI 1.04 - 4.04], p = 0.04) and longer PEG tube duration (median 162 days vs. 134 days, HR 1.51 [95% CI 1.12 - 2.08], p = 0.006 in multivariate analysis. Conclusion: We developed and externally validated a fully-automated platform that strongly correlates with imaging-assessed sarcopenia in patients with H&N cancer that correlates with survival and toxicity outcomes. This study constitutes a significant stride towards the integration of sarcopenia assessment into decision-making for individuals diagnosed with HNSCC. SUMMARY STATEMENT: In this study, we developed and externally validated a deep learning model to investigate the impact of sarcopenia, defined as the loss of skeletal muscle mass, on patients with head and neck squamous cell carcinoma (HNSCC) undergoing radiotherapy. We demonstrated an efficient, fullyautomated deep learning pipeline that can accurately segment C3 skeletal muscle area, calculate cross-sectional area, and derive a skeletal muscle index to diagnose sarcopenia from a standard of care CT scan. In multi-institutional data, we found that pre-treatment sarcopenia was associated with significantly reduced overall survival and an increased risk of adverse events. Given the increased vulnerability of patients with HNSCC, the assessment of sarcopenia prior to radiotherapy may aid in informed treatment decision-making and serve as a predictive marker for the necessity of early supportive measures.

4.
JAMA Netw Open ; 5(12): e2248793, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36576736

RESUMO

Importance: Lung cancer screening with chest computed tomography (CT) prevents lung cancer death; however, fewer than 5% of eligible Americans are screened. CXR-LC, an open-source deep learning tool that estimates lung cancer risk from existing chest radiograph images and commonly available electronic medical record (EMR) data, may enable automated identification of high-risk patients as a step toward improving lung cancer screening participation. Objective: To validate CXR-LC using EMR data to identify individuals at high-risk for lung cancer to complement 2022 US Centers for Medicare & Medicaid Services (CMS) lung cancer screening eligibility guidelines. Design, Setting, and Participants: This prognostic study compared CXR-LC estimates with CMS screening guidelines using patient data from a large US hospital system. Included participants were persons who currently or formerly smoked cigarettes with an outpatient posterior-anterior chest radiograph between January 1, 2013, and December 31, 2014, with no history of lung cancer or screening CT. Data analysis was performed between May 2021 and June 2022. Exposures: CXR-LC lung cancer screening eligibility (previously defined as having a 3.297% or greater 12-year risk) based on inputs (chest radiograph image, age, sex, and whether currently smoking) extracted from the EMR. Main Outcomes and Measures: 6-year incident lung cancer. Results: A total of 14 737 persons were included in the study population (mean [SD] age, 62.6 [6.8] years; 7154 [48.5%] male; 204 [1.4%] Asian, 1051 [7.3%] Black, 432 [2.9%] Hispanic, 12 330 [85.2%] White) with a 2.4% rate of incident lung cancer over 6 years (361 patients with cancer). CMS eligibility could be determined in 6277 patients (42.6%) using smoking pack-year and quit-date from the EMR. Patients eligible by both CXR-LC and 2022 CMS criteria had a high rate of lung cancer (83 of 974 patients [8.5%]), higher than those eligible by 2022 CMS criteria alone (5 of 177 patients [2.8%]; P < .001). Patients eligible by CXR-LC but not 2022 CMS criteria also had a high 6-year incidence of lung cancer (121 of 3703 [3.3%]). In the 8460 cases (57.4%) where CMS eligibility was unknown, CXR-LC eligible patients had a 5-fold higher rate of lung cancer than ineligible (127 of 5177 [2.5%] vs 18 of 2283 [0.5%]; P < .001). Similar results were found in subgroups, including female patients and Black persons. Conclusions and Relevance: Using routine chest radiographs and other data automatically extracted from the EMR, CXR-LC identified high-risk individuals who may benefit from lung cancer screening CT.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Masculino , Feminino , Idoso , Estados Unidos , Pessoa de Meia-Idade , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/epidemiologia , Detecção Precoce de Câncer , Registros Eletrônicos de Saúde , Medicare
5.
Abdom Radiol (NY) ; 45(3): 632-643, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31734709

RESUMO

PURPOSE: To compare the performance of advanced radiomics analysis to morphological assessment by expert radiologists to predict a good or complete response to chemoradiotherapy in rectal cancer using baseline staging MRI. MATERIALS AND METHODS: We retrospectively assessed the primary staging MRIs [prior to chemoradiotherapy (CRT)] of 133 rectal cancer patients from 2 centers. First, two expert radiologists subjectively estimated the likelihood of achieving a "complete response" (ypT0) and "good response" (TRG 1-2), using a 5-point score (based on TN-stage, MRF/EMVI-status, size/signal/shape). Next, tumor volumes were segmented on high b value DWI (semi-automated, corrected by 2 non-expert and 2-expert readers, resulting in 5 segmentations), copied to the remaining sequences after which a total of 2505 radiomic features were extracted from T2W, low and high b value DWI and ADC. Stability of features for noise due to inter-reader and inter-scanner and protocol variations was assessed using intraclass correlation (ICC) and the Kruskal-Wallis test. Using data from center 1 (n = 86; training set), top 9 features were selected using minimum Redundancy Maximum Relevance and combined in a logistic regression model. Finally, diagnostic performance of the fitted models was assessed on data from center 2 (n = 47; validation set) and compared to the performance of the radiologists. RESULTS: The Radiomic models resulted in AUCs of 0.69-0.79 (with similar results for the segmentations performed by expert/non-expert readers) to predict response, results similar to the morphologic prediction by the expert radiologists (AUC 0.67-0.83). Radiomics using semi-automatically generated segmentations (without manual input) did not result in significant predictive performance. CONCLUSIONS: Radiomics could predict response to therapy with comparable diagnostic performance as expert radiologists, regardless of whether image segmentation was performed by non-expert or expert readers, indicating that expert input is not required in order for the radiomics workflow to produce significant predictive performance.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/terapia , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Quimiorradioterapia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Terapia Neoadjuvante , Estadiamento de Neoplasias , Neoplasias Retais/patologia , Estudos Retrospectivos , Carga Tumoral
6.
Sci Rep ; 7(1): 10117, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860628

RESUMO

Quantitative extraction of high-dimensional mineable data from medical images is a process known as radiomics. Radiomics is foreseen as an essential prognostic tool for cancer risk assessment and the quantification of intratumoural heterogeneity. In this work, 1615 radiomic features (quantifying tumour image intensity, shape, texture) extracted from pre-treatment FDG-PET and CT images of 300 patients from four different cohorts were analyzed for the risk assessment of locoregional recurrences (LR) and distant metastases (DM) in head-and-neck cancer. Prediction models combining radiomic and clinical variables were constructed via random forests and imbalance-adjustment strategies using two of the four cohorts. Independent validation of the prediction and prognostic performance of the models was carried out on the other two cohorts (LR: AUC = 0.69 and CI = 0.67; DM: AUC = 0.86 and CI = 0.88). Furthermore, the results obtained via Kaplan-Meier analysis demonstrated the potential of radiomics for assessing the risk of specific tumour outcomes using multiple stratification groups. This could have important clinical impact, notably by allowing for a better personalization of chemo-radiation treatments for head-and-neck cancer patients from different risk groups.


Assuntos
Carcinoma de Células Escamosas/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Medicina de Precisão/métodos , Tomografia Computadorizada por Raios X/métodos , Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Medição de Risco
7.
Nat Rev Clin Oncol ; 14(3): 169-186, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27725679

RESUMO

Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and drug development. New IBs need to be established either as useful tools for testing research hypotheses in clinical trials and research studies, or as clinical decision-making tools for use in healthcare, by crossing 'translational gaps' through validation and qualification. Important differences exist between IBs and biospecimen-derived biomarkers and, therefore, the development of IBs requires a tailored 'roadmap'. Recognizing this need, Cancer Research UK (CRUK) and the European Organisation for Research and Treatment of Cancer (EORTC) assembled experts to review, debate and summarize the challenges of IB validation and qualification. This consensus group has produced 14 key recommendations for accelerating the clinical translation of IBs, which highlight the role of parallel (rather than sequential) tracks of technical (assay) validation, biological/clinical validation and assessment of cost-effectiveness; the need for IB standardization and accreditation systems; the need to continually revisit IB precision; an alternative framework for biological/clinical validation of IBs; and the essential requirements for multicentre studies to qualify IBs for clinical use.


Assuntos
Biomarcadores Tumorais , Neoplasias/diagnóstico , Tomada de Decisão Clínica , Análise Custo-Benefício , Fluordesoxiglucose F18 , Ácido Fólico/análogos & derivados , Humanos , Neoplasias/economia , Compostos de Organotecnécio , Tomografia por Emissão de Pósitrons/métodos , Prognóstico , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes , Projetos de Pesquisa/normas , Viés de Seleção
8.
Bioinformatics ; 31(9): 1505-7, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25505093

RESUMO

MOTIVATION: The field of toxicogenomics (the application of '-omics' technologies to risk assessment of compound toxicities) has expanded in the last decade, partly driven by new legislation, aimed at reducing animal testing in chemical risk assessment but mainly as a result of a paradigm change in toxicology towards the use and integration of genome wide data. Many research groups worldwide have generated large amounts of such toxicogenomics data. However, there is no centralized repository for archiving and making these data and associated tools for their analysis easily available. RESULTS: The Data Infrastructure for Chemical Safety Assessment (diXa) is a robust and sustainable infrastructure storing toxicogenomics data. A central data warehouse is connected to a portal with links to chemical information and molecular and phenotype data. diXa is publicly available through a user-friendly web interface. New data can be readily deposited into diXa using guidelines and templates available online. Analysis descriptions and tools for interrogating the data are available via the diXa portal. AVAILABILITY AND IMPLEMENTATION: http://www.dixa-fp7.eu CONTACT: d.hendrickx@maastrichtuniversity.nl; info@dixa-fp7.eu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Bases de Dados de Compostos Químicos , Toxicogenética , Animais , Perfilação da Expressão Gênica , Humanos , Metabolômica , Proteômica , Ratos
9.
Radiology ; 259(3): 875-84, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21325035

RESUMO

UNLABELLED: Quantitative imaging biomarkers could speed the development of new treatments for unmet medical needs and improve routine clinical care. However, it is not clear how the various regulatory and nonregulatory (eg, reimbursement) processes (often referred to as pathways) relate, nor is it clear which data need to be collected to support these different pathways most efficiently, given the time- and cost-intensive nature of doing so. The purpose of this article is to describe current thinking regarding these pathways emerging from diverse stakeholders interested and active in the definition, validation, and qualification of quantitative imaging biomarkers and to propose processes to facilitate the development and use of quantitative imaging biomarkers. A flexible framework is described that may be adapted for each imaging application, providing mechanisms that can be used to develop, assess, and evaluate relevant biomarkers. From this framework, processes can be mapped that would be applicable to both imaging product development and to quantitative imaging biomarker development aimed at increasing the effectiveness and availability of quantitative imaging. SUPPLEMENTAL MATERIAL: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.10100800/-/DC1.


Assuntos
Biomarcadores , Diagnóstico por Imagem , Difusão de Inovações , Avaliação da Tecnologia Biomédica/normas , Pesquisa Biomédica/organização & administração , Conflito de Interesses , Aprovação de Equipamentos , Europa (Continente) , Humanos , Valor Preditivo dos Testes , Estados Unidos , United States Food and Drug Administration
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA