Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Environ Sci Pollut Res Int ; 30(1): 884-898, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35907074

RESUMO

Arsenic (As) traces have been reported worldwide in vegetables and crops cultivated in As-polluted soils. Being carcinogenic, the presence of As in edibles is of great concern as it ultimately reaches humans and animals through the food chain. Besides, As toxicity adversely affects the growth, physiology, metabolism, and productivity of crops. In the present study, Trigonella foenum-graecum (Fenugreek) was exposed to the As stress (0, 50, 100, and 150 µM sodium arsenate) for a week. Further, evaluation of As accumulation in roots and shoots, magnitude and visualization of oxyradicals, and thiol-based defence offered by Fenugreek was assessed. The root and leaf accumulated 258-453 µg g-1 dry wt (DW) and 81.4-102.1 µg g-1 DW of As, respectively. An arsenic-mediated decline in the growth index and increase in oxidative stress was noted. Arsenic stress modulated the content of thiol compounds; especially cysteine content increased from 0.36 to 0.43 µmole g-1 FW protein was noted. Random Amplified Polymorphic DNA (RAPD)-based analysis showed DNA damage in As-treated plants. Health risk assessment parameters showed that As concentration in the consumable plant shoot was below the critical hazard level (hazard quotient < 1). Moreover, T. foenum-graecum showed varied responses to As-induced oxidative stress with applied concentrations (150 µM being more toxic than lower concentrations). In addition, the RAPD profile and level of thiol compounds were proved significant biomarkers to assess the As toxicity in plants. The conclusion of this study will help users of fenugreek to have a clue and create awareness regarding the consumption.


Assuntos
Arsênio , Trigonella , Humanos , Animais , Arsênio/toxicidade , Arsênio/metabolismo , Técnica de Amplificação ao Acaso de DNA Polimórfico , Extratos Vegetais/farmacologia , Dano ao DNA , Compostos de Sulfidrila/metabolismo
2.
Environ Res ; 167: 223-233, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30055452

RESUMO

Advanced Oxidation Processes (AOPs) are the techniques employed for oxidation of various organic contaminants in polluted water with the objective of making it suitable for human consumption like household and drinking purpose. AOPs use potent chemical oxidants to bring down the contaminant level in the water. In addition to this function, these processes are also capable to kills microbes (as disinfectant) and remove odor as well as improve taste of the drinking water. The non-photochemical AOPs methods include generation of hydroxyl radical in absence of light either by ozonation or through Fenton reaction. The photochemical AOPs methods use UV light along with H2O2, O3 and/or Fe+2 to generate reactive hydroxyl radical. Non-photochemical method is the commonly used whereas, photochemical method is used when conventional O3 and H2O2 cannot completely oxidize organic pollutants. However, the choice of AOPs methods is depended upon the type of contaminant to be removed. AOPs cause loss of biological activity of the pollutant present in drinking water without generation of any toxicity. Conventional ozonation and AOPs can inactivate estrogenic compounds, antiviral compounds, antibiotics, and herbicides. However, the study of different AOPs methods for the treatment of drinking water has shown that oxidation of parent compound can also lead to the generation of a degradation/transformation product having biological activity/chemical toxicity similar to or different from the parent compound. Furthermore, an increased toxicity can also occur in AOPs treated drinking water. This review discusses various methods of AOPs, their merits, its application in drinking water treatment, the related issue of the evolution of toxicity in AOPs treated drinking water, biocatalyst, and analytical methods for identification of pollutants /transformed products and provides future directions to address such an issue.


Assuntos
Água Potável/química , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos , Peróxido de Hidrogênio , Radical Hidroxila , Oxirredução , Raios Ultravioleta , Poluentes Químicos da Água/química
3.
3 Biotech ; 7(6): 373, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29071170

RESUMO

Isolation of high-quality RNA from weed plants such as Parthenium hysterophorus is a difficult task due to the hindrance caused by numerous secondary metabolites. Such metabolites not only affect the quality and yield of RNA, but also limit the quality of downstream applications. Therefore, the present study was undertaken to design a protocol for yielding RNA with better quality and quantity from P. hysterophorus leaf which could be suitable for functional genomics. To achieve the objective, four different important RNA extraction protocols, viz. acid guanidinium thiocyanate-phenol-chloroform, phenol-LiCl precipitation, TRIzol®, and PVP-ethanol were tested. The PVP-ethanol method proved to be best among the tested protocols. This method was further modified for obtaining improved quality and yield of RNA. The modified method successfully enhanced the yield of RNA from 280 to 334 µg g-1 fresh weight. The absorbance ratio (A260/A280) was in the purity range of 1.9 that indicated the good quality of RNA. To prove the feasibility of the extracted RNA in PCR-based cDNA synthesis, actin transcripts were targeted and successfully amplified using suitable primers. The improved protocol thus not only improved the yield and quality of RNA, but also gave better results in reverse transcriptase PCR.

4.
Mutat Res ; 747(2): 246-52, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22705419

RESUMO

The mutagenic potential of titanium dioxide nanoparticles (TiO(2)-NPs) of an average size 30.6nm was investigated using ß-galactosidase (lacZ) gene complementation in plasmid pUC19/lacZ(-)Escherichia coli DH5α system. Plasmid pUC19 was treated with varying concentrations of TiO(2)-NPs and allowed to transfect the CaCl(2)-induced competent DH5α cells. The data revealed loss in transformation efficiency of TiO(2)-NPs treated plasmids as compared to untreated plasmid DNA in DH5α host cells. Induction of multiple mutations in α-fragment of lacZ gene caused synthesis of non-functional ß-galactosidase enzyme, which resulted in a significant number of white (mutant) colonies of transformed E. coli cells. Screening of mutant transformants based on blue:white colony assay and DNA sequence analysis of lacZ gene fragment clearly demonstrated TiO(2)-NPs induced mutagenesis. Multiple alignment of selectable marker lacZ gene sequences from randomly selected mutants and control cells provided a gene specific map of TiO(2)-NPs induced mutations. Mutational analysis suggested that all nucleotide changes were point mutations, predominantly transversions (TVs) and transitions (TSs). A total of 32 TVs and 6 TSs mutations were mapped within 296 nucleotides (nt) long partial sequence of lacZ gene. The region between 102 and 147nt within lacZ gene sequence was found to be most susceptible to mutations with nine detectable point mutations (8 TVs and 1 TSs). Guanine base was determined to be more prone to TiO(2)-NPs induced mutations. This study suggested the pUC19/E. coli DH5αlacZ gene α-complementation system, as a novel genetic approach for determining the mutagenic potential, and specificity of manufactured NPs and nanomaterials.


Assuntos
Teste de Complementação Genética , Testes de Mutagenicidade/métodos , Nanopartículas/toxicidade , Titânio/toxicidade , beta-Galactosidase/genética , Sobrevivência Celular , Escherichia coli/genética , Transfecção , Transformação Bacteriana/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA