Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(43): 96891-96905, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37584796

RESUMO

Biodiversity and ecosystem services (ESs) are closely linked. Human activities have caused critical damage to the habitat and ecosystem function of organisms, leading to decline in global biodiversity and ecosystem services. To ensure sustainable development of local ecological environments, it is critical to analyze the spatial matching degree of biodiversity and ESs and identify ecologically vulnerable areas. Taking Xishuangbanna, southern China, as an example, we constructed a pixel-scale matching degree index to analyze the spatial matching degree of endangered plant diversity (EPD) and four ESs and classified the matching degree into low-low, low-high, high-low, and high-high four types. The results revealed a mismatch relationship of EPD and ESs in more than 70% of areas. Under the influence of altitude and land use/land cover (LULC) type, the matching degree of EPD and ESs showed obvious spatial heterogeneity. In low-altitude areas in the south of Xishuangbanna, EPD and ESs mainly showed mismatch, while high-altitude areas in the west had a better match. Natural forest was the main land cover in which EPD and ESs showed high-high match and its areal proportion was much larger than that of rubber plantation, tea plantation, and cropland. Our findings also stress the need to concentrate conservation efforts on areas exhibiting a low-low match relationship, indicative of potential ecological vulnerability. The pixel-scale spatial matching degree analysis framework developed in this study for EPD and ESs provides high-resolution maps with 30 m × 30 m pixel size, which can support the implementation of ecological protection measures and policy formulation, and has a wide range of applicability. This study provides valuable insights for the sustainable management of biodiversity and ESs, contributing to the strengthening of local ecological environment protection.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Humanos , Conservação dos Recursos Naturais/métodos , Biodiversidade , Desenvolvimento Sustentável , Análise Espacial , China
2.
J Environ Manage ; 329: 117086, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36565497

RESUMO

The contradiction between ecological conservation and economic development posed significant challenges to the management of National Parks. From the perspective of Ecological Economics, the cause of the contradiction is the difficulty of creating monetary profits from biodiversity conservation, which is the primary target of National Parks. Integrating Ecosystem Services (ESs) into space boundary delimitation is the next step in National Park management since ESs are closely related to human well-being and can provide monetary benefits. Extending the boundary of the National Park to high-ES areas and promoting ES trading can help generate funds for ecological restoration. Using the Sanjiangyuan National Park (SNP) as an example, this study proposed integrating ESs into National Park delimitation for sustainable National Park management. It was found that the current SNP boundary provides insufficient coverage of high-ES areas, while most of the multiple ES supply areas were dispersed to SNP's southeast edge. The Core conservation area showed the most prominent contradiction between ecological conservation and economic development, resulting in many low-level ES sites in the Traditional use area failing to be included in the Restoration area for protection. Future approaches would be well-advised to re-adjust SNP boundary by expanding the ES hotspot areas on the southeastern edge of SNP, as well as expanding funding sources via ecological product trade and other tools to supplement the input for ecological restoration. Overall, this study can act as a reference for optimizing National Parks within and beyond China, and promote the understanding of the Ecological Economy and sustainable development.


Assuntos
Ecossistema , Parques Recreativos , Humanos , Conservação dos Recursos Naturais/métodos , Biodiversidade , China
3.
Environ Sci Pollut Res Int ; 29(59): 88852-88865, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35842510

RESUMO

Urban agglomeration will be the main mode of future urbanization in China, greatly influencing social and economic development and ecosystem protection at the whole city cluster scale. It is important to analyze the impacts of large-scale, scattered land use and cover change (LUCC) consisting of one-pole-multi-point urbanization in city clusters on regional ecosystem services (ESs), so as to increase ecological security and maintain ES levels. Using the urban-rural gradient analysis method (UGAM), this study examined driver-response mechanisms of large-scale, scattered agglomeration urbanization on ESs along an urban-rural gradient and at a regional scale. This was done by simulating and analyzing tempo-spatial variations in ES characteristics along concentric ring gradients in the Central Yunnan City Cluster (CYCC) under its present urbanization path. The results showed that rapid urban sprawl is the main driver affecting the integral value of ESs in CYCC and that ES trade-offs (through LUCC caused by urbanization) between adjacent zones along the urban-rural gradient will particularly exacerbate the degradation of integral ES levels. Hence, CYCC should follow a sustainable, eco-friendly urbanization path and consider ecological principles and the impact of LUCC on regional ESs along the urban-rural gradient in top-level design and decision-making on urban planning and strategic land use management. Differentiated regional development policies should be formulated for each area, the urban-rural development pattern and layout optimized, the scale of construction land rationally controlled, and the overall efficiency of land use improved. Ecological buffers should be set up around areas with sharp and obvious changes in land use, to alleviate the negative impact of large-scale, decentralized city cluster urbanization on regional ESs.


Assuntos
Ecossistema , Urbanização , Conservação dos Recursos Naturais/métodos , China , Cidades
4.
Sci Rep ; 11(1): 23807, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893677

RESUMO

Leaf functional traits support plant survival and growth in different stress and disturbed conditions and respond according to leaf habit. The present study examined 13 leaf traits (3 morphological, 3 chemical, 5 physiological, and 2 stoichiometry) of nine dominant forest tree species (3 coniferous, 3 deciduous broad-leaved, 3 evergreen broad-leafed) to understand the varied response of leaf habits. The hypothesis was to test if functional traits of the conifers, deciduous and evergreen differ significantly in the temperate forest and to determine the applicability of leaf economic theory i.e., conservative vs. acquisitive resource investment, in the temperate Himalayan region. The attributes of the functional traits i.e., leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), leaf water content (LWC), stomatal conductance (Gs), and transpiration (E) followed the order deciduous > evergreen > coniferous. Leaf carbon and leaf C/N ratio showed the opposite pattern, coniferous > evergreen > deciduous. Chlorophyll (Chl) and photosynthetic rate (A) were highest for evergreen species, followed by deciduous and coniferous species. Also, structural equation modelling determined that morphological factors were negatively related to physiological and positively with chemical factors. Nevertheless, physiological and chemical factors were positively related to each other. The physiological traits were mainly regulated by stomatal conductance (Gs) however the morphological traits were determined by LDMC. Stoichiometry traits, such as leaf C/N, were found to be positively related to leaf carbon, and leaf N/P was found to be positively related to leaf nitrogen. The result of the leaf functional traits relationship would lead to precise prediction for the functionality of the temperate forest ecosystem at the regional scale.


Assuntos
Ecossistema , Meio Ambiente , Florestas , Folhas de Planta/anatomia & histologia , Árvores/anatomia & histologia , Árvores/fisiologia , Biodiversidade , Clima , Modelos Teóricos , Compostos Fitoquímicos/análise , Folhas de Planta/química , Fenômenos Fisiológicos Vegetais , Característica Quantitativa Herdável
5.
Sci Rep ; 10(1): 11350, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647237

RESUMO

Official data on daily PM2.5, PM10, SO2, NO2, CO, and maximum 8-h average O3 (O3_8h) concentrations from January 2015 to December 2018 were evaluated and air pollution status and dynamics in Shanghai municipality were examined. Factors affecting air quality, including meteorological factors and socio-economic indicators, were analyzed. The main findings were that: (1) Overall air quality status in Shanghai municipality has improved and number of days meeting 'Chinese ambient air quality standards' (CAAQS) Grade II has increased. (2) The most frequent major pollutant in Shanghai municipality is O3 (which exceeded the standard on 110 days in 2015, 84 days in 2016, 126 days in 2017, 113 days in 2018), followed by PM2.5 (120days in 2015, 104 days in 2016, 67 days in 2017, 61 days in 2018) and NO2 (50 days in 2015, 67 days in 2016, 79 days in 2017, 63 days in 2018). (3) PM2.5 pollution in winter and O3 pollution in summer are the main air quality challenges in Shanghai municipality. (4) Statistical analysis suggested that PM2.5, PM10, SO2 and NO2 concentrations were significantly negatively associated with precipitation (Prec) and atmosphere temperature (T) (p < 0.05), while the O3 concentration was significantly positively associated with Prec and T (p < 0.05). Lower accumulation of PM, SO2, NO2, and CO and more serious O3 pollution were revealed during months with higher temperature and more precipitation in Shanghai. The correlation between the socio-economic factors and the air pollutants suggest that further rigorous measures are needed to control PM2.5 and that further studies are needed to identify O3 formation mechanisms and control strategies. The results provide scientific insights into meteorological factors and socio-economic indicators influencing air pollution in Shanghai.

6.
Sci Total Environ ; 726: 138565, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32481220

RESUMO

Natural vegetation is important for ecosystem services (ESs) provision, but is decreasing rapidly due to human-driven land use change, especially rapid expansion of commercial plantations. This is leading to a decrease in ESs provision, so measures are urgently needed to protect natural vegetation. Human activities, especially commercial plantations, can also lead to differences in vegetation types and associated ESs provision. This feature varies with altitude, an issue which has received insufficient attention. In this study, four ESs relevant to stakeholders (carbon storage, nitrogen export, sediment retention and water yield) were assessed. InVEST models and statistical methods (ANOVA; exploratory hierarchical clustering) were used to analyse: 1) similarities/differences in ESs provision between different vegetation types and 2) spatial differences in ESs in different altitude zones in the Xishuangbanna region of China. The results showed that vegetation types in Xishuangbanna and their ESs supply capacity differed markedly, with the overall ESs supply capacity of natural forests exceeding that of commercial plantations. Promotion of mixed organic agriculture can be a balanced measure to secure future economic development and ecological protection. This study can act as reference for vegetation protection in other areas within and beyond China.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA