Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
BMJ Open ; 13(9): e073388, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666560

RESUMO

INTRODUCTION: In people with Parkinson's (PwP) impaired mobility is associated with an increased falls risk. To improve mobility, dopaminergic medication is typically prescribed, but complex medication regimens result in suboptimal adherence. Exploring medication adherence and its impact on mobility in PwP will provide essential insights to optimise medication regimens and improve mobility. However, this is typically assessed in controlled environments, during one-off clinical assessments. Digital health technology (DHT) presents a means to overcome this, by continuously and remotely monitoring mobility and medication adherence. This study aims to use a novel DHT system (DHTS) (comprising of a smartphone, smartwatch and inertial measurement unit (IMU)) to assess self-reported medication adherence, and its impact on digital mobility outcomes (DMOs) in PwP. METHODS AND ANALYSIS: This single-centre, UK-based study, will recruit 55 participants with Parkinson's. Participants will complete a range of clinical, and physical assessments. Participants will interact with a DHTS over 7 days, to assess self-reported medication adherence, and monitor mobility and contextual factors in the real world. Participants will complete a motor complications diary (ON-OFF-Dyskinesia) throughout the monitoring period and, at the end, a questionnaire and series of open-text questions to evaluate DHTS usability. Feasibility of the DHTS and the motor complications diary will be assessed. Validated algorithms will quantify DMOs from IMU walking activity. Time series modelling and deep learning techniques will model and predict DMO response to medication and effects of contextual factors. This study will provide essential insights into medication adherence and its effect on real-world mobility in PwP, providing insights to optimise medication regimens. ETHICS AND DISSEMINATION: Ethical approval was granted by London-142 Westminster Research Ethics Committee (REC: 21/PR/0469), protocol V.2.4. Results will be published in peer-reviewed journals. All participants will provide written, informed consent. TRIAL REGISTRATION NUMBER: ISRCTN13156149.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Tecnologia , Algoritmos , Tecnologia Biomédica , Adesão à Medicação , Estudos Observacionais como Assunto
2.
J Parkinsons Dis ; 13(6): 999-1009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545259

RESUMO

BACKGROUND: Real-world walking speed (RWS) measured using wearable devices has the potential to complement the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS III) for motor assessment in Parkinson's disease (PD). OBJECTIVE: Explore cross-sectional and longitudinal differences in RWS between PD and older adults (OAs), and whether RWS was related to motor disease severity cross-sectionally, and if MDS-UPDRS III was related to RWS, longitudinally. METHODS: 88 PD and 111 OA participants from ICICLE-GAIT (UK) were included. RWS was evaluated using an accelerometer at four time points. RWS was aggregated within walking bout (WB) duration thresholds. Between-group-comparisons in RWS between PD and OAs were conducted cross-sectionally, and longitudinally with mixed effects models (MEMs). Cross-sectional association between RWS and MDS-UPDRS III was explored using linear regression, and longitudinal association explored with MEMs. RESULTS: RWS was significantly lower in PD (1.04 m/s) in comparison to OAs (1.10 m/s) cross-sectionally. RWS significantly decreased over time for both cohorts and decline was more rapid in PD by 0.02 m/s per year. Significant negative relationship between RWS and the MDS-UPDRS III only existed at a specific WB threshold (30 to 60 s, ß= - 3.94 points, p = 0.047). MDS-UPDRS III increased significantly by 1.84 points per year, which was not related to change in RWS. CONCLUSION: Digital mobility assessment of gait may add unique information to quantify disease progression remotely, but further validation in research and clinical settings is needed.


Assuntos
Doença de Parkinson , Humanos , Idoso , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico , Estudos Transversais , Gravidade do Paciente , Índice de Gravidade de Doença , Modelos Lineares
3.
Front Bioeng Biotechnol ; 11: 1143248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214281

RESUMO

Introduction: Accurately assessing people's gait, especially in real-world conditions and in case of impaired mobility, is still a challenge due to intrinsic and extrinsic factors resulting in gait complexity. To improve the estimation of gait-related digital mobility outcomes (DMOs) in real-world scenarios, this study presents a wearable multi-sensor system (INDIP), integrating complementary sensing approaches (two plantar pressure insoles, three inertial units and two distance sensors). Methods: The INDIP technical validity was assessed against stereophotogrammetry during a laboratory experimental protocol comprising structured tests (including continuous curvilinear and rectilinear walking and steps) and a simulation of daily-life activities (including intermittent gait and short walking bouts). To evaluate its performance on various gait patterns, data were collected on 128 participants from seven cohorts: healthy young and older adults, patients with Parkinson's disease, multiple sclerosis, chronic obstructive pulmonary disease, congestive heart failure, and proximal femur fracture. Moreover, INDIP usability was evaluated by recording 2.5-h of real-world unsupervised activity. Results and discussion: Excellent absolute agreement (ICC >0.95) and very limited mean absolute errors were observed for all cohorts and digital mobility outcomes (cadence ≤0.61 steps/min, stride length ≤0.02 m, walking speed ≤0.02 m/s) in the structured tests. Larger, but limited, errors were observed during the daily-life simulation (cadence 2.72-4.87 steps/min, stride length 0.04-0.06 m, walking speed 0.03-0.05 m/s). Neither major technical nor usability issues were declared during the 2.5-h acquisitions. Therefore, the INDIP system can be considered a valid and feasible solution to collect reference data for analyzing gait in real-world conditions.

4.
PLoS One ; 17(10): e0269615, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36201476

RESUMO

BACKGROUND: The development of optimal strategies to treat impaired mobility related to ageing and chronic disease requires better ways to detect and measure it. Digital health technology, including body worn sensors, has the potential to directly and accurately capture real-world mobility. Mobilise-D consists of 34 partners from 13 countries who are working together to jointly develop and implement a digital mobility assessment solution to demonstrate that real-world digital mobility outcomes have the potential to provide a better, safer, and quicker way to assess, monitor, and predict the efficacy of new interventions on impaired mobility. The overarching objective of the study is to establish the clinical validity of digital outcomes in patient populations impacted by mobility challenges, and to support engagement with regulatory and health technology agencies towards acceptance of digital mobility assessment in regulatory and health technology assessment decisions. METHODS/DESIGN: The Mobilise-D clinical validation study is a longitudinal observational cohort study that will recruit 2400 participants from four clinical cohorts. The populations of the Innovative Medicine Initiative-Joint Undertaking represent neurodegenerative conditions (Parkinson's Disease), respiratory disease (Chronic Obstructive Pulmonary Disease), neuro-inflammatory disorder (Multiple Sclerosis), fall-related injuries, osteoporosis, sarcopenia, and frailty (Proximal Femoral Fracture). In total, 17 clinical sites in ten countries will recruit participants who will be evaluated every six months over a period of two years. A wide range of core and cohort specific outcome measures will be collected, spanning patient-reported, observer-reported, and clinician-reported outcomes as well as performance-based outcomes (physical measures and cognitive/mental measures). Daily-living mobility and physical capacity will be assessed directly using a wearable device. These four clinical cohorts were chosen to obtain generalizable clinical findings, including diverse clinical, cultural, geographical, and age representation. The disease cohorts include a broad and heterogeneous range of subject characteristics with varying chronic care needs, and represent different trajectories of mobility disability. DISCUSSION: The results of Mobilise-D will provide longitudinal data on the use of digital mobility outcomes to identify, stratify, and monitor disability. This will support the development of widespread, cost-effective access to optimal clinical mobility management through personalised healthcare. Further, Mobilise-D will provide evidence-based, direct measures which can be endorsed by regulatory agencies and health technology assessment bodies to quantify the impact of disease-modifying interventions on mobility. TRIAL REGISTRATION: ISRCTN12051706.


Assuntos
Fragilidade , Doença de Parkinson , Doença Pulmonar Obstrutiva Crônica , Humanos , Monitorização Fisiológica , Estudos Observacionais como Assunto , Modalidades de Fisioterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA