Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Res (Camb) ; 12(1): 1-11, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36866215

RESUMO

Reliance on animal tests for chemical safety assessment is increasingly being challenged, not only because of ethical reasons, but also because they procrastinate regulatory decisions and because of concerns over the transferability of results to humans. New approach methodologies (NAMs) need to be fit for purpose and new thinking is required to reconsider chemical legislation, validation of NAMs and opportunities to move away from animal tests. This article summarizes the presentations from a symposium at the 2022 Annual Congress of the British Toxicology Society on the topic of the future of chemical risk assessment in the 21st century. The symposium included three case-studies where NAMs have been used in safety assessments. The first case illustrated how read-across augmented with some in vitro tests could be used reliably to perform the risk assessment of analogues lacking data. The second case showed how specific bioactivity assays could identify an NAM point of departure (PoD) and how this could be translated through physiologically based kinetic modelling in an in vivo PoD for the risk assessment. The third case showed how adverse-outcome pathway (AOP) information, including molecular-initiating event and key events with their underlying data, established for certain chemicals could be used to produce an in silico model that is able to associate chemical features of an unstudied substance with specific AOPs or AOP networks. The manuscript presents the discussions that took place regarding the limitations and benefits of these new approaches, and what are the barriers and the opportunities for their increased use in regulatory decision making.

2.
Regul Toxicol Pharmacol ; 132: 105161, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35508214

RESUMO

Parabens are esters of para-hydroxybenzoic acid that have been used as preservatives in many types of products for decades including agrochemicals, pharmaceuticals, food and cosmetics. This illustrative case study with propylparaben (PP) demonstrates a 10-step read-across (RAX) framework in practice. It aims at establishing a proof-of-concept for the value added by new approach methodologies (NAMs) in read-across (RAX) for use in a next-generation risk assessment (NGRA) in order to assess consumer safety after exposure to PP-containing cosmetics. In addition to structural and physico-chemical properties, in silico information, toxicogenomics, in vitro toxicodynamic, toxicokinetic data from PBK models, and bioactivity data are used to provide evidence of the chemical and biological similarity of PP and analogues and to establish potency trends for observed effects in vitro. The chemical category under consideration is short (C1-C4) linear chain n-alkyl parabens: methylparaben, ethylparaben, propylparaben and butylparaben. The goal of this case study is to illustrate how a practical framework for RAX can be used to fill a hypothetical data gap for reproductive toxicity of the target chemical PP.


Assuntos
Cosméticos , Parabenos , Cosméticos/química , Cosméticos/toxicidade , Parabenos/química , Parabenos/toxicidade , Conservantes Farmacêuticos/toxicidade , Reprodução , Medição de Risco/métodos
3.
Regul Toxicol Pharmacol ; 129: 105094, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34990780

RESUMO

This paper presents a 10-step read-across (RAX) framework for use in cases where a threshold of toxicological concern (TTC) approach to cosmetics safety assessment is not possible. RAX builds on established approaches that have existed for more than two decades using chemical properties and in silico toxicology predictions, by further substantiating hypotheses on toxicological similarity of substances, and integrating new approach methodologies (NAM) in the biological and kinetic domains. NAM include new types of data on biological observations from, for example, in vitro assays, toxicogenomics, metabolomics, receptor binding screens and uses physiologically-based kinetic (PBK) modelling to inform about systemic exposure. NAM data can help to substantiate a mode/mechanism of action (MoA), and if similar chemicals can be shown to work by a similar MoA, a next generation risk assessment (NGRA) may be performed with acceptable confidence for a data-poor target substance with no or inadequate safety data, based on RAX approaches using data-rich analogue(s), and taking account of potency or kinetic/dynamic differences.


Assuntos
Cosméticos/toxicidade , Toxicologia/métodos , Simulação por Computador , Técnicas In Vitro , Metabolômica , Medição de Risco , Toxicocinética , Toxicologia/normas
4.
Clin Transl Sci ; 11(6): 573-581, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30052317

RESUMO

A clinical pharmacokinetic study was performed in 12 healthy women to evaluate systemic exposure to aluminum following topical application of a representative antiperspirant formulation under real-life use conditions. A simple roll-on formulation containing an extremely rare isotope of aluminum (26 Al) chlorohydrate (ACH) was prepared to commercial specifications. A 26 Al radio-microtracer was used to distinguish dosed aluminum from natural background, using accelerated mass spectroscopy. The 26 Al citrate was administered intravenously (i.v.) to estimate fraction absorbed (Fabs ) following topical delivery. In blood samples after i.v. administration, 26 Al was readily detected (mean area under the curve (AUC) = 1,273 ± 466 hours×fg/mL). Conversely, all blood samples following topical application were below the lower limit of quantitation (LLOQ; 0.12 fg/mL), except two samples (0.13 and 0.14 fg/mL); a maximal AUC was based on LLOQs. The aluminum was above the LLOQ (61 ag/mL) in 31% of urine samples. From the urinary excretion data, a conservative estimated range for dermal Fabs of 0.002-0.06% was calculated, with a mean estimate of 0.0094%.


Assuntos
Alumínio/farmacocinética , Antiperspirantes/efeitos adversos , Radioisótopos/farmacocinética , Absorção Cutânea , Administração Cutânea , Administração Intravenosa , Adulto , Alumínio/administração & dosagem , Alumínio/efeitos adversos , Antiperspirantes/química , Área Sob a Curva , Qualidade de Produtos para o Consumidor , Feminino , Voluntários Saudáveis , Humanos , Parestesia/induzido quimicamente , Parestesia/epidemiologia , Prurido/induzido quimicamente , Prurido/epidemiologia , Radioisótopos/administração & dosagem , Radioisótopos/efeitos adversos , Eliminação Renal , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA