Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Anal Bioanal Chem ; 411(8): 1503-1508, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30710208

RESUMO

Isocitrate dehydrogenase (IDH) I and II mutations in gliomas cause an abnormal accumulation of 2-hydroxyglutarate (2-HG) in these tumor cells. These mutations have potential prognostic value in that knowledge of the mutation status can lead to improved surgical resection. Information on mutation status obtained by immunohistochemistry or genomic analysis is not available during surgery. We report a rapid extraction nanoelectrospray ionization (nESI) method of determining 2-HG. This should allow the determination of IDH mutation status to be performed intraoperatively, within minutes, using a miniature mass spectrometer. This study demonstrates that the combination of tandem mass spectrometry with low-resolution mass spectrometry allows this analysis to be performed with confidence. Graphical Abstract.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Isocitrato Desidrogenase/genética , Mutação , Espectrometria de Massas em Tandem/instrumentação , Desenho de Equipamento , Humanos , Papel , Espectrometria de Massas por Ionização por Electrospray/economia , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/economia , Espectrometria de Massas em Tandem/métodos , Fatores de Tempo
2.
J Neurosurg ; 132(1): 180-187, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30611146

RESUMO

OBJECTIVE: The authors describe a rapid intraoperative ambient ionization mass spectrometry (MS) method for determining isocitrate dehydrogenase (IDH) mutation status from glioma tissue biopsies. This method offers new glioma management options and may impact extent of resection goals. Assessment of the IDH mutation is key for accurate glioma diagnosis, particularly for differentiating diffuse glioma from other neoplastic and reactive inflammatory conditions, a challenge for the standard intraoperative diagnostic consultation that relies solely on morphology. METHODS: Banked glioma specimens (n = 37) were analyzed by desorption electrospray ionization-MS (DESI-MS) to develop a diagnostic method to detect the known altered oncometabolite in IDH-mutant gliomas, 2-hydroxyglutarate (2HG). The method was used intraoperatively to analyze tissue smears obtained from glioma patients undergoing resection and to rapidly diagnose IDH mutation status (< 5 minutes). Fifty-one tumor core biopsies from 25 patients (14 wild type [WT] and 11 mutant) were examined and data were analyzed using analysis of variance and receiver operating characteristic curve analysis. RESULTS: The optimized DESI-MS method discriminated between IDH-WT and IDH-mutant gliomas, with an average sensitivity and specificity of 100%. The average normalized DESI-MS 2HG signal was an order of magnitude higher in IDH-mutant glioma than in IDH-WT glioma. The DESI 2HG signal intensities correlated with independently measured 2HG concentrations (R2 = 0.98). In 1 case, an IDH1 R132H-mutant glioma was misdiagnosed as a demyelinating condition by frozen section histology during the intraoperative consultation, and no resection was performed pending the final pathology report. A second craniotomy and tumor resection was performed after the final pathology provided a diagnosis most consistent with an IDH-mutant glioblastoma. During the second craniotomy, high levels of 2HG in the tumor core biopsies were detected. CONCLUSIONS: This study demonstrates the capability to differentiate rapidly between IDH-mutant gliomas and IDH-WT conditions by DESI-MS during tumor resection. DESI-MS analysis of tissue smears is simple and can be easily integrated into the standard intraoperative pathology consultation. This approach may aid in solving differential diagnosis problems associated with low-grade gliomas and could influence intraoperative decisions regarding extent of resection, ultimately improving patient outcome. Research is ongoing to expand the patient cohort, systematically validate the DESI-MS method, and investigate the relationships between 2HG and tumor heterogeneity.


Assuntos
Neoplasias Encefálicas/enzimologia , Glioma/enzimologia , Cuidados Intraoperatórios/métodos , Isocitrato Desidrogenase/genética , Proteínas de Neoplasias/genética , Espectrometria de Massas por Ionização por Electrospray , Adulto , Astrocitoma/enzimologia , Astrocitoma/genética , Astrocitoma/patologia , Astrocitoma/cirurgia , Biópsia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Craniotomia , Feminino , Glioblastoma/enzimologia , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/cirurgia , Glioma/genética , Glioma/patologia , Glioma/cirurgia , Humanos , Isocitrato Desidrogenase/análise , Masculino , Pessoa de Meia-Idade , Reoperação , Adulto Jovem
3.
Analyst ; 142(21): 4058-4066, 2017 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-28984323

RESUMO

Touch spray mass spectrometry using medical swabs is an ambient ionization technique (ionization of unprocessed sample in the open air) that has potential intraoperative application in quickly identifying the disease state of tissue and in better characterizing the resection margin. To explore this potential, we studied 29 human brain tumor specimens and obtained evidence that this technique can provide diagnostic molecular information that is relevant to brain cancer. Touch spray using medical swabs involves the physical sampling of tissue using a medical swab on a spatial scale of a few mm2 with subsequent ionization occurring directly from the swab tip upon addition of solvent and application of a high voltage. Using a tertiary mixture of acetonitrile, N,N-dimethylformamide, and ethanol, membrane-derived phospholipids and oncometabolites are extracted from the tissue, incorporated into the sprayed microdroplets, vacuumed into the mass spectrometer, and characterized in the resulting mass spectra. The tumor cell load was assessed from the complex phospholipid pattern in the mass spectra and also separately by measurement of N-acetylaspartate. Mutation status of the isocitrate dehydrogenase gene was determined via detection of the oncometabolite 2-hydroxyglutarate. The lack of sample pretreatment makes touch spray mass spectrometry using medical swabs a feasible intraoperative strategy for rapid surgical assessment.


Assuntos
Neoplasias Encefálicas/cirurgia , Glioma/cirurgia , Margens de Excisão , Espectrometria de Massas , Fosfolipídeos/análise , Humanos
4.
Proc Natl Acad Sci U S A ; 114(26): 6700-6705, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28607048

RESUMO

Intraoperative desorption electrospray ionization-mass spectrometry (DESI-MS) is used to characterize tissue smears by comparison with a library of DESI mass spectra of pathologically determined tissue types. Measurements are performed in the operating room within 3 min. These mass spectra provide direct information on tumor infiltration into white or gray brain matter based on N-acetylaspartate (NAA) and on membrane-derived complex lipids. The mass spectra also indicate the isocitrate dehydrogenase mutation status of the tumor via detection of 2-hydroxyglutarate, currently assessed postoperatively on biopsied tissue using immunohistochemistry. Intraoperative DESI-MS measurements made at surgeon-defined positions enable assessment of relevant disease state of tissue within the tumor mass and examination of the resection cavity walls for residual tumor. Results for 73 biopsies from 10 surgical resection cases show that DESI-MS allows detection of glioma and estimation of high tumor cell percentage (TCP) at surgical margins with 93% sensitivity and 83% specificity. TCP measurements from NAA are corroborated by indirect measurements based on lipid profiles. Notably, high percentages (>50%) of unresected tumor were found in one-half of the margin biopsy smears, even in cases where postoperative MRI suggested gross total tumor resection. Unresected tumor causes recurrence and malignant progression, as observed within a year in one case examined in this study. These results corroborate the utility of DESI-MS in assessing surgical margins for maximal safe tumor resection. Intraoperative DESI-MS analysis of tissue smears, ex vivo, can be inserted into the current surgical workflow with no alterations. The data underscore the complexity of glioma infiltration.


Assuntos
Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Glioma/patologia , Glioma/cirurgia , Monitorização Intraoperatória/métodos , Espectrometria de Massas por Ionização por Electrospray , Adulto , Idoso , Feminino , Substância Cinzenta/patologia , Substância Cinzenta/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Substância Branca/patologia , Substância Branca/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA