Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Med Inform Decis Mak ; 23(1): 145, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528441

RESUMO

BACKGROUND: Accurate and timely decision-making in lung transplantation (LTx) programs is critical. The main objective of this study was to develop a mobile-based evidence-based clinical decision support system (CDSS) to enhance the management of lung transplant candidates. METHOD: An iterative participatory software development process was employed to develop the ImamLTx CDSS. This study was accomplished in three phases. First, required data and standard clinical workflow were identified according to the literature review and expert consensus. Second, a rule-based knowledge-based CDSS application was developed. In the third phase, this CDSS was evaluated. The evaluation was done using the standard Post-Study System Usability Questionnaire (PSSUQ 18.3) and ten usability heuristics factors for user interface design. RESULTS: According to expert consensus, fifty-five data items were identified as essential data sets using the Content Validity Ratio (CVR) formula. By integrating information flow in clinical practices with clinical protocols, more than 450 rules and 500 knowledge statements were extracted. This CDSS provides clinical decision support on an Android platform regarding inclusion and exclusion referral criteria, optimum transplant time based on the type of lung disease, findings of initial assessment, and the overall evaluation of lung transplant candidates. Evaluation results showed high usability ratings due to the fact provided accuracy and sensitivity of this lung transplant CDSS with the information quality domain receiving the highest score (6.305 from 7). CONCLUSION: Through a stepwise approach, the ImamLTx CDSS was developed to provide LTx programs with timely patient data access via a mobile platform. Our results suggest integration with existing workflow to support clinical decision-making and provide patient-specific recommendations.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Transplante de Pulmão , Humanos , Fluxo de Trabalho , Ciência Translacional Biomédica , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA