Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
PLoS One ; 17(10): e0269615, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36201476

RESUMO

BACKGROUND: The development of optimal strategies to treat impaired mobility related to ageing and chronic disease requires better ways to detect and measure it. Digital health technology, including body worn sensors, has the potential to directly and accurately capture real-world mobility. Mobilise-D consists of 34 partners from 13 countries who are working together to jointly develop and implement a digital mobility assessment solution to demonstrate that real-world digital mobility outcomes have the potential to provide a better, safer, and quicker way to assess, monitor, and predict the efficacy of new interventions on impaired mobility. The overarching objective of the study is to establish the clinical validity of digital outcomes in patient populations impacted by mobility challenges, and to support engagement with regulatory and health technology agencies towards acceptance of digital mobility assessment in regulatory and health technology assessment decisions. METHODS/DESIGN: The Mobilise-D clinical validation study is a longitudinal observational cohort study that will recruit 2400 participants from four clinical cohorts. The populations of the Innovative Medicine Initiative-Joint Undertaking represent neurodegenerative conditions (Parkinson's Disease), respiratory disease (Chronic Obstructive Pulmonary Disease), neuro-inflammatory disorder (Multiple Sclerosis), fall-related injuries, osteoporosis, sarcopenia, and frailty (Proximal Femoral Fracture). In total, 17 clinical sites in ten countries will recruit participants who will be evaluated every six months over a period of two years. A wide range of core and cohort specific outcome measures will be collected, spanning patient-reported, observer-reported, and clinician-reported outcomes as well as performance-based outcomes (physical measures and cognitive/mental measures). Daily-living mobility and physical capacity will be assessed directly using a wearable device. These four clinical cohorts were chosen to obtain generalizable clinical findings, including diverse clinical, cultural, geographical, and age representation. The disease cohorts include a broad and heterogeneous range of subject characteristics with varying chronic care needs, and represent different trajectories of mobility disability. DISCUSSION: The results of Mobilise-D will provide longitudinal data on the use of digital mobility outcomes to identify, stratify, and monitor disability. This will support the development of widespread, cost-effective access to optimal clinical mobility management through personalised healthcare. Further, Mobilise-D will provide evidence-based, direct measures which can be endorsed by regulatory agencies and health technology assessment bodies to quantify the impact of disease-modifying interventions on mobility. TRIAL REGISTRATION: ISRCTN12051706.


Assuntos
Fragilidade , Doença de Parkinson , Doença Pulmonar Obstrutiva Crônica , Humanos , Monitorização Fisiológica , Estudos Observacionais como Assunto , Modalidades de Fisioterapia
2.
Contemp Clin Trials ; 46: 85-91, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26600286

RESUMO

INTRODUCTION: The widespread adoption of electronic health records (EHR) provides a new opportunity to improve the efficiency of clinical research. The European EHR4CR (Electronic Health Records for Clinical Research) 4-year project has developed an innovative technological platform to enable the re-use of EHR data for clinical research. The objective of this cost-benefit assessment (CBA) is to assess the value of EHR4CR solutions compared to current practices, from the perspective of sponsors of clinical trials. MATERIALS AND METHODS: A CBA model was developed using an advanced modeling approach. The costs of performing three clinical research scenarios (S) applied to a hypothetical Phase II or III oncology clinical trial workflow (reference case) were estimated under current and EHR4CR conditions, namely protocol feasibility assessment (S1), patient identification for recruitment (S2), and clinical study execution (S3). The potential benefits were calculated considering that the estimated reduction in actual person-time and costs for performing EHR4CR S1, S2, and S3 would accelerate time to market (TTM). Probabilistic sensitivity analyses using Monte Carlo simulations were conducted to manage uncertainty. RESULTS: Should the estimated efficiency gains achieved with the EHR4CR platform translate into faster TTM, the expected benefits for the global pharmaceutical oncology sector were estimated at €161.5m (S1), €45.7m (S2), €204.5m (S1+S2), €1906m (S3), and up to €2121.8m (S1+S2+S3) when the scenarios were used sequentially. CONCLUSIONS: The results suggest that optimizing clinical trial design and execution with the EHR4CR platform would generate substantial added value for pharmaceutical industry, as main sponsors of clinical trials in Europe, and beyond.


Assuntos
Pesquisa Biomédica/economia , Ensaios Clínicos como Assunto/economia , Simulação por Computador , Análise Custo-Benefício , Registros Eletrônicos de Saúde , Pesquisa Biomédica/métodos , Ensaios Clínicos como Assunto/métodos , Ensaios Clínicos Fase II como Assunto/economia , Ensaios Clínicos Fase II como Assunto/métodos , Ensaios Clínicos Fase III como Assunto/economia , Ensaios Clínicos Fase III como Assunto/métodos , Europa (Continente) , Estudos de Viabilidade , Humanos , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA