Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Clin Infect Dis ; 74(6): 983-992, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-34192307

RESUMO

BACKGROUND: Vaccines are needed to reduce the burden of group A Streptococcus (GAS). We assessed the potential health-economic value of GAS vaccines achievable through prevention of invasive disease and acute upper respiratory infections in the United States. METHODS: We estimated annual incidence of invasive GAS disease and associated costs incurred from hospitalization and management of long-term sequelae, as well as productivity losses resulting from acute illness, long-term disability, and mortality. We also estimated healthcare and productivity costs associated with GAS pharyngitis, sinusitis, and acute otitis media. We estimated costs averted by prevention of invasive disease and acute upper respiratory infections for vaccines with differing efficacy profiles; our base case considered vaccines meeting the World Health Organization Preferred Product Profile (WHO-PPP) with a 6-year average duration of protection. RESULTS: Costs of invasive GAS disease and acute upper respiratory infections totaled $6.08 (95% confidence interval [CI], $5.33-$6.86) billion annually. Direct effects of vaccines meeting WHO-PPP characteristics and administered at ages 12 and 18 months would avert $609 (95% CI, $558-$663) million in costs annually, primarily by preventing noninvasive disease; with an additional dose at age 5 years, averted costs would total $869 (95% CI, $798-$945) million annually. Adult vaccination at age 65 years would avert $326 (95% CI, $271-$387) million in annual costs associated with invasive GAS disease. Indirect effects of vaccination programs reducing incidence of GAS diseases across all ages by 20% would avert roughly $1 billion in costs each year. CONCLUSIONS: The economic burden of GAS is substantial. Our findings should inform prioritization of GAS vaccine development and evaluation.


Assuntos
Otite Média , Infecções Respiratórias , Infecções Estreptocócicas , Adulto , Idoso , Pré-Escolar , Análise Custo-Benefício , Humanos , Programas de Imunização , Lactente , Otite Média/epidemiologia , Otite Média/prevenção & controle , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/prevenção & controle , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/prevenção & controle , Streptococcus pyogenes , Estados Unidos/epidemiologia , Vacinação
2.
Lancet Reg Health Am ; 5: 100133, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34849504

RESUMO

BACKGROUND: We examined school reopening policies amidst ongoing transmission of the highly transmissible Delta variant, accounting for vaccination among individuals ≥12 years. METHODS: We collected data on social contacts among school-aged children in the California Bay Area and developed an individual-based transmission model to simulate transmission of the Delta variant of SARS-CoV-2 in schools. We evaluated the additional infections in students and teachers/staff resulting over a 128-day semester from in-school instruction compared to remote instruction when various NPIs (mask use, cohorts, and weekly testing of students/teachers) were implemented, across various community-wide vaccination coverages (50%, 60%, 70%), and student (≥12 years) and teacher/staff vaccination coverages (50% - 95%). FINDINGS: At 70% vaccination coverage, universal masking reduced infections by >57% among students. Masking plus 70% vaccination coverage enabled achievement of <50 excess cases per 1,000 students/teachers, but stricter risk tolerances, such as <25 excess infections per 1,000 students/teachers, required a cohort approach in elementary and middle school populations. In the absence of NPIs, increasing the vaccination coverage of community members from 50% to 70% or elementary teachers from 70% to 95% reduced the excess rate of infection among elementary school students attributable to school transmission by 24% and 37%, respectively. INTERPRETATIONS: Amidst Delta variant circulation, we found that schools are not inherently low risk, yet can be made so with high community vaccination coverages and masking. Vaccination of adults protects unvaccinated children. FUNDING: National Science Foundation grant no. 2032210; National Institutes of Health grant nos. R01AI125842 and R01AI148336; MIDAS Coordination Center (MIDASSUP2020-4).

3.
medRxiv ; 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34462757

RESUMO

BACKGROUND: We examined school reopening policies amidst rising transmission of the highly transmissible Delta variant, accounting for vaccination among individuals aged 12 years and older, with the goal of characterizing risk to students and teachers under various within-school non-pharmaceutical interventions (NPIs) combined with specific vaccination coverage levels. METHODS: We developed an individual-based transmission model to simulate transmission of the Delta variant of SARS-CoV-2 among a synthetic population, representative of Bay Area cities. We parameterized the model using community contact rates from vaccinated households ascertained from a household survey of Bay Area families with children conducted between February - April, 2021. INTERVENTIONS AND OUTCOMES: We evaluated the additional infections in students and teachers/staff resulting over a 128-day semester from in-school instruction compared to remote instruction when various NPIs (mask use, cohorts, and weekly testing of students/teachers) were implemented in schools, across various community-wide vaccination coverages (50%, 60%, 70%), and student (≥12 years) and teacher/staff vaccination coverages (50% - 95%). We quantified the added benefit of universal masking over masking among unvaccinated students and teachers, across varying levels of vaccine effectiveness (45%, 65%, 85%), and compared results between Delta and Alpha variant circulation. RESULTS: The Delta variant sharply increases the risk of within-school COVID-transmission when compared to the Alpha variant. In our highest risk scenario (50% community and within-school vaccine coverage, no within-school NPIs, and predominant circulation of the Delta variant), we estimated that an elementary school could see 33-65 additional symptomatic cases of COVID-19 over a four-month semester (depending on the relative susceptibility of children <10 years). In contrast, under the Bay Area reopening plan (universal mask use, community and school vaccination coverage of 70%), we estimated excess symptomatic infection attributable to school reopening among 2.0-9.7% of elementary students (8-36 excess symptomatic cases per school over the semester), 3.0% of middle school students (13 cases per school) and 0.4% of high school students (3 cases per school). Excess rates among teachers attributable to reopening were similar. Achievement of lower risk tolerances, such as <5 excess infections per 1,000 students or teachers, required a cohort approach in elementary and middle school populations. In the absence of NPIs, increasing the vaccination coverage of community members from 50% to 70% or elementary teachers from 70% to 95% reduced the estimated excess rate of infection among elementary school students attributable to school transmission by 24% and 41%, respectively. We estimated that with 70% coverage of the eligible community and school population with a vaccine that is ≤65% effective, universal masking can avert more cases than masking of unvaccinated persons alone. CONCLUSIONS: Amidst circulation of the Delta variant, our findings demonstrated that schools are not inherently low risk, yet can be made so with high community vaccination coverages and universal masking. Vaccination of adult community members and teachers protects unvaccinated elementary and middle school children. Elementary and middle schools that can support additional interventions, such as cohorts and testing, should consider doing so, particularly if additional studies find that younger children are equally as susceptible as adults to the Delta variant of SARS-CoV-2. LIMITATIONS: We did not consider the effect of social distancing in classrooms, or variation in testing frequency, and considerable uncertainty remains in key transmission parameters.

4.
Malar J ; 18(1): 372, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752868

RESUMO

Malaria in pregnancy (MiP) contributes to devastating maternal and neonatal outcomes. Coverage of intermittent preventive treatment during pregnancy (IPTp) remains alarmingly low. Data was compiled from MiP programme reviews and performed a literature search on access to and determinants of IPTp. National malaria control and reproductive health (RH) policies may be discordant. Integration may improve coverage. Medication stock-outs are a persistent problem. Quality improvement programmes are often not standardized. Capacity building varies across countries. Community engagement efforts primarily focus on promotion of services. The majority of challenges can be addressed at country level to improve IPTp coverage.


Assuntos
Antimaláricos/uso terapêutico , Malária/prevenção & controle , Aceitação pelo Paciente de Cuidados de Saúde , Complicações Parasitárias na Gravidez/prevenção & controle , Adolescente , Adulto , Antimaláricos/provisão & distribuição , Fortalecimento Institucional/estatística & dados numéricos , Controle de Doenças Transmissíveis/legislação & jurisprudência , Participação da Comunidade/estatística & dados numéricos , Feminino , Política de Saúde/legislação & jurisprudência , Humanos , Gravidez , Melhoria de Qualidade/estatística & dados numéricos , Saúde Reprodutiva/legislação & jurisprudência , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA