Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Fish Biol ; 103(5): 1178-1189, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37492948

RESUMO

There is a pressing need for more-holistic approaches to fisheries assessments along with growing demand to reduce the health impacts of sample collections. Metabolomic tools enable the use of sample matrices that can be collected with minimal impact on the organism (e.g., blood, urine, and mucus) and provide high-throughput, untargeted biochemical information without the requirement of a sequenced genome. These qualities make metabolomics ideal for monitoring a wide range of fish species, particularly those under protected status. In the current study, we surveyed the relative abundances of 120 endogenous metabolites in epidermal mucus across eight freshwater fish species belonging to seven phylogenetic orders. Principal component analysis was used to provide an overview of the data set, revealing strong interspecies relationships in the epidermal mucous metabolome. Normalized relative abundances of individual endogenous metabolites were then used to identify commonalities across multiple species, as well as those metabolites that showed notable species specificity. For example, taurine was measured in high relative abundance in the epidermal mucus of common carp (Cyprinus carpio), northern pike (Esox lucius), golden shiner (Notemigonus crysoleucas), rainbow trout (Oncorhynchus mykiss), and rainbow smelt (Osmerus mordax), whereas γ-amino butyric acid (GABA) exhibited a uniquely high relative abundance in flathead catfish (Pylodictis olivaris). Finally, hierarchical cluster analysis was used to evaluate species relatedness as characterized by both the epidermal mucous metabolome (phenotype) and genetic phylogeny (genotype). This comparison revealed species for which relatedness in the epidermal mucous metabolome composition closely aligns with phylogenetic relatedness (e.g., N. crysoleucas and C. carpio), as well as species for which these two measures are not well aligned (e.g., P. olivaris and Polyodon spathula). These, and other findings reported here, highlight novel areas for future research with fish, including development of epidermal mucous-based markers for non-invasive health monitoring, sex determination, and hypoxia tolerance.


Assuntos
Carpas , Cyprinidae , Ictaluridae , Oncorhynchus mykiss , Osmeriformes , Animais , Filogenia , Metaboloma , Esocidae , Muco , Água Doce , Oncorhynchus mykiss/metabolismo
2.
Environ Toxicol Chem ; 41(1): 30-45, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34714945

RESUMO

Organisms are exposed to ever-changing complex mixtures of chemicals over the course of their lifetime. The need to more comprehensively describe this exposure and relate it to adverse health effects has led to formulation of the exposome concept in human toxicology. Whether this concept has utility in the context of environmental hazard and risk assessment has not been discussed in detail. In this Critical Perspective, we propose-by analogy to the human exposome-to define the eco-exposome as the totality of the internal exposure (anthropogenic and natural chemicals, their biotransformation products or adducts, and endogenous signaling molecules that may be sensitive to an anthropogenic chemical exposure) over the lifetime of an ecologically relevant organism. We describe how targeted and nontargeted chemical analyses and bioassays can be employed to characterize this exposure and discuss how the adverse outcome pathway concept could be used to link this exposure to adverse effects. Available methods, their limitations, and/or requirement for improvements for practical application of the eco-exposome concept are discussed. Even though analysis of the eco-exposome can be resource-intensive and challenging, new approaches and technologies make this assessment increasingly feasible. Furthermore, an improved understanding of mechanistic relationships between external chemical exposure(s), internal chemical exposure(s), and biological effects could result in the development of proxies, that is, relatively simple chemical and biological measurements that could be used to complement internal exposure assessment or infer the internal exposure when it is difficult to measure. Environ Toxicol Chem 2022;41:30-45. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Rotas de Resultados Adversos , Expossoma , Ecotoxicologia , Exposição Ambiental/análise , Humanos , Medição de Risco
3.
Environ Sci Technol ; 55(23): 15596-15608, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34748315

RESUMO

Despite over 50 years of research on the use of population models in chemical risk assessment, their practical utility has remained elusive. A novel application and interpretation of ecotoxicological models, Endogenous Lifecycle Models (ELM), is proposed that offers some of the benefits sought from population models, at much lower cost of design, parametrization, and verification. ELMs capture the endogenous lifecycle processes of growth, development, survival, and reproduction and integrate these to estimate and predict expected fitness. Two measures of fitness are proposed as natural model predictions in the context of chemical risk assessment, lifetime reproductive success, and the expected annual propagation of genetic descendants, including self (intrinsic fitness). Six characteristics of the ELM approach are reviewed and illustrated with two ELM examples, the first for a general passerine lifecycle and the second for bald eagle (Haliaeetus leucocephalus). Throughout, the focus is on development of robust qualitative model predictions that depend as little as possible on specific parameter values. Thus, ELMs sacrifice precision to optimize generality in understanding the effects of chemicals across the diversity of avian lifecycles. Notably, the ELM approach integrates naturally with the adverse outcome pathway framework; this integration can be employed as a midtier risk assessment tool when lower tier analyses suggest potential risk.


Assuntos
Águias , Animais , Ecotoxicologia , Estágios do Ciclo de Vida , Reprodução , Medição de Risco
4.
Environ Sci Technol ; 54(14): 8491-8499, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32584560

RESUMO

A growing number of environmental pollutants are known to adversely affect the thyroid hormone system, and major gaps have been identified in the tools available for the identification, and the hazard and risk assessment of these thyroid hormone disrupting chemicals. We provide an example of how the adverse outcome pathway (AOP) framework and associated data generation can address current testing challenges in the context of fish early life stage tests, and fish tests in general. We demonstrate how a suite of assays covering biological processes involved in the underlying toxicological pathways can be implemented in a tiered screening and testing approach for thyroid hormone disruption, using the levels of assessment of the OECD's Conceptual Framework for the Testing and Assessment of Endocrine Disrupting Chemicals as a guide.


Assuntos
Rotas de Resultados Adversos , Disruptores Endócrinos , Poluentes Ambientais , Animais , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Peixes , Medição de Risco , Hormônios Tireóideos
5.
Environ Toxicol Chem ; 39(8): 1485-1505, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32474951

RESUMO

Environmental and human health challenges are pronounced in Asia, an exceptionally diverse and complex region where influences of global megatrends are extensive and numerous stresses to environmental quality exist. Identifying priorities necessary to engage grand challenges can be facilitated through horizon scanning exercises, and to this end we identified and examined 23 priority research questions needed to advance toward more sustainable environmental quality in Asia, as part of the Global Horizon Scanning Project. Advances in environmental toxicology, environmental chemistry, biological monitoring, and risk-assessment methodologies are necessary to address the adverse impacts of environmental stressors on ecosystem services and biodiversity, with Asia being home to numerous biodiversity hotspots. Intersections of the food-energy-water nexus are profound in Asia; innovative and aggressive technologies are necessary to provide clean water, ensure food safety, and stimulate energy efficiency, while improving ecological integrity and addressing legacy and emerging threats to public health and the environment, particularly with increased aquaculture production. Asia is the largest chemical-producing continent globally. Accordingly, sustainable and green chemistry and engineering present decided opportunities to stimulate innovation and realize a number of the United Nations Sustainable Development Goals. Engaging the priority research questions identified herein will require transdisciplinary coordination through existing and nontraditional partnerships within and among countries and sectors. Answering these questions will not be easy but is necessary to achieve more sustainable environmental quality in Asia. Environ Toxicol Chem 2020;39:1485-1505. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Ecossistema , Desenvolvimento Sustentável , Animais , Ásia , Biodiversidade , Ecotoxicologia , Poluentes Ambientais/análise , Humanos , Medição de Risco
6.
Environ Toxicol Chem ; 39(4): 913-922, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31965587

RESUMO

Predictive approaches to assessing the toxicity of contaminant mixtures have been largely limited to chemicals that exert effects through the same biological molecular initiating event. However, by understanding specific pathways through which chemicals exert effects, it may be possible to identify shared "downstream" nodes as the basis for forecasting interactive effects of chemicals with different molecular initiating events. Adverse outcome pathway (AOP) networks conceptually support this type of analysis. We assessed the utility of a simple AOP network for predicting the effects of mixtures of an aromatase inhibitor (fadrozole) and an androgen receptor agonist (17ß-trenbolone) on aspects of reproductive endocrine function in female fathead minnows. The fish were exposed to multiple concentrations of fadrozole and 17ß-trenbolone individually or in combination for 48 or 96 h. Effects on 2 shared nodes in the AOP network, plasma 17ß-estradiol (E2) concentration and vitellogenin (VTG) production (measured as hepatic vtg transcripts) responded as anticipated to fadrozole alone but were minimally impacted by 17ß-trenbolone alone. Overall, there were indications that 17ß-trenbolone enhanced decreases in E2 and vtg in fadrozole-exposed fish, as anticipated, but the results often were not statistically significant. Failure to consistently observe hypothesized interactions between fadrozole and 17ß-trenbolone could be due to several factors, including lack of impact of 17ß-trenbolone, inherent biological variability in the endpoints assessed, and/or an incomplete understanding of interactions (including feedback) between different pathways within the hypothalamic-pituitary-gonadal axis. Environ Toxicol Chem 2020;39:913-922. © 2020 SETAC.


Assuntos
Rotas de Resultados Adversos , Androgênios/toxicidade , Inibidores da Aromatase/toxicidade , Cyprinidae/fisiologia , Sistema Endócrino/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Animais , Cyprinidae/metabolismo , Sinergismo Farmacológico , Estradiol/metabolismo , Fadrozol/toxicidade , Feminino , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Masculino , Ovário/efeitos dos fármacos , Ovário/metabolismo , Acetato de Trembolona/toxicidade , Vitelogeninas/metabolismo
7.
Environ Toxicol Chem ; 38(8): 1606-1624, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31361364

RESUMO

Anticipating, identifying, and prioritizing strategic needs represent essential activities by research organizations. Decided benefits emerge when these pursuits engage globally important environment and health goals, including the United Nations Sustainable Development Goals. To this end, horizon scanning efforts can facilitate identification of specific research needs to address grand challenges. We report and discuss 40 priority research questions following engagement of scientists and engineers in North America. These timely questions identify the importance of stimulating innovation and developing new methods, tools, and concepts in environmental chemistry and toxicology to improve assessment and management of chemical contaminants and other diverse environmental stressors. Grand challenges to achieving sustainable management of the environment are becoming increasingly complex and structured by global megatrends, which collectively challenge existing sustainable environmental quality efforts. Transdisciplinary, systems-based approaches will be required to define and avoid adverse biological effects across temporal and spatial gradients. Similarly, coordinated research activities among organizations within and among countries are necessary to address the priority research needs reported here. Acquiring answers to these 40 research questions will not be trivial, but doing so promises to advance sustainable environmental quality in the 21st century. Environ Toxicol Chem 2019;38:1606-1624. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Conservação dos Recursos Naturais , Ecotoxicologia , Pesquisa , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Humanos , América do Norte , Desenvolvimento Sustentável
8.
Environ Toxicol Chem ; 37(9): 2281-2295, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30027629

RESUMO

The United Nations' Sustainable Development Goals have been established to end poverty, protect the planet, and ensure prosperity for all. Delivery of the Sustainable Development Goals will require a healthy and productive environment. An understanding of the impacts of chemicals which can negatively impact environmental health is therefore essential to the delivery of the Sustainable Development Goals. However, current research on and regulation of chemicals in the environment tend to take a simplistic view and do not account for the complexity of the real world, which inhibits the way we manage chemicals. There is therefore an urgent need for a step change in the way we study and communicate the impacts and control of chemicals in the natural environment. To do this requires the major research questions to be identified so that resources are focused on questions that really matter. We present the findings of a horizon-scanning exercise to identify research priorities of the European environmental science community around chemicals in the environment. Using the key questions approach, we identified 22 questions of priority. These questions covered overarching questions about which chemicals we should be most concerned about and where, impacts of global megatrends, protection goals, and sustainability of chemicals; the development and parameterization of assessment and management frameworks; and mechanisms to maximize the impact of the research. The research questions identified provide a first-step in the path forward for the research, regulatory, and business communities to better assess and manage chemicals in the natural environment. Environ Toxicol Chem 2018;37:2281-2295. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Meio Ambiente , Pesquisa , Desenvolvimento Sustentável , Biodiversidade , Poluentes Ambientais/toxicidade , Europa (Continente) , Humanos
9.
Sci Total Environ ; 628-629: 1542-1556, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30045572

RESUMO

The Adverse Outcome Pathway (AOP) concept is a knowledge assembly and communication tool to facilitate the transparent translation of mechanistic information into outcomes meaningful to the regulatory assessment of chemicals. The AOP framework and associated knowledgebases (KBs) have received significant attention and use in the regulatory toxicology community. However, it is increasingly apparent that the potential stakeholder community for the AOP concept and AOP KBs is broader than scientists and regulators directly involved in chemical safety assessment. In this paper we identify and describe those stakeholders who currently-or in the future-could benefit from the application of the AOP framework and knowledge to specific problems. We also summarize the challenges faced in implementing pathway-based approaches such as the AOP framework in biological sciences, and provide a series of recommendations to meet critical needs to ensure further progression of the framework as a useful, sustainable and dependable tool supporting assessments of both human health and the environment. Although the AOP concept has the potential to significantly impact the organization and interpretation of biological information in a variety of disciplines/applications, this promise can only be fully realized through the active engagement of, and input from multiple stakeholders, requiring multi-pronged substantive long-term planning and strategies.

10.
Integr Environ Assess Manag ; 13(2): 302-316, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27791330

RESUMO

In the present study, existing regulatory frameworks and test systems for assessing potential endocrine active chemicals are described, and associated challenges are discussed, along with proposed approaches to address these challenges. Regulatory frameworks vary somewhat across geographies, but all basically evaluate whether a chemical possesses endocrine activity and whether this activity can result in adverse outcomes either to humans or to the environment. Current test systems include in silico, in vitro, and in vivo techniques focused on detecting potential endocrine activity, and in vivo tests that collect apical data to detect possible adverse effects. These test systems are currently designed to robustly assess endocrine activity and/or adverse effects in the estrogen, androgen, and thyroid hormone signaling pathways; however, there are some limitations of current test systems for evaluating endocrine hazard and risk. These limitations include a lack of certainty regarding: 1) adequately sensitive species and life stages; 2) mechanistic endpoints that are diagnostic for endocrine pathways of concern; and 3) the linkage between mechanistic responses and apical, adverse outcomes. Furthermore, some existing test methods are resource intensive with regard to time, cost, and use of animals. However, based on recent experiences, there are opportunities to improve approaches to and guidance for existing test methods and to reduce uncertainty. For example, in vitro high-throughput screening could be used to prioritize chemicals for testing and provide insights as to the most appropriate assays for characterizing hazard and risk. Other recommendations include adding endpoints for elucidating connections between mechanistic effects and adverse outcomes, identifying potentially sensitive taxa for which test methods currently do not exist, and addressing key endocrine pathways of possible concern in addition to those associated with estrogen, androgen, and thyroid signaling. Integr Environ Assess Manag 2017;13:302-316. © 2016 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Ecotoxicologia , Disruptores Endócrinos/análise , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Testes de Toxicidade/métodos , Animais , Bioensaio , Disruptores Endócrinos/toxicidade , Monitoramento Ambiental/normas , Poluentes Ambientais/toxicidade , Humanos , Medição de Risco
11.
Environ Health Perspect ; 124(11): 1671-1682, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27091369

RESUMO

BACKGROUND: The Next Generation (NexGen) of Risk Assessment effort is a multi-year collaboration among several organizations evaluating new, potentially more efficient molecular, computational, and systems biology approaches to risk assessment. This article summarizes our findings, suggests applications to risk assessment, and identifies strategic research directions. OBJECTIVE: Our specific objectives were to test whether advanced biological data and methods could better inform our understanding of public health risks posed by environmental exposures. METHODS: New data and methods were applied and evaluated for use in hazard identification and dose-response assessment. Biomarkers of exposure and effect, and risk characterization were also examined. Consideration was given to various decision contexts with increasing regulatory and public health impacts. Data types included transcriptomics, genomics, and proteomics. Methods included molecular epidemiology and clinical studies, bioinformatic knowledge mining, pathway and network analyses, short-duration in vivo and in vitro bioassays, and quantitative structure activity relationship modeling. DISCUSSION: NexGen has advanced our ability to apply new science by more rapidly identifying chemicals and exposures of potential concern, helping characterize mechanisms of action that influence conclusions about causality, exposure-response relationships, susceptibility and cumulative risk, and by elucidating new biomarkers of exposure and effects. Additionally, NexGen has fostered extensive discussion among risk scientists and managers and improved confidence in interpreting and applying new data streams. CONCLUSIONS: While considerable uncertainties remain, thoughtful application of new knowledge to risk assessment appears reasonable for augmenting major scope assessments, forming the basis for or augmenting limited scope assessments, and for prioritization and screening of very data limited chemicals. Citation: Cote I, Andersen ME, Ankley GT, Barone S, Birnbaum LS, Boekelheide K, Bois FY, Burgoon LD, Chiu WA, Crawford-Brown D, Crofton KM, DeVito M, Devlin RB, Edwards SW, Guyton KZ, Hattis D, Judson RS, Knight D, Krewski D, Lambert J, Maull EA, Mendrick D, Paoli GM, Patel CJ, Perkins EJ, Poje G, Portier CJ, Rusyn I, Schulte PA, Simeonov A, Smith MT, Thayer KA, Thomas RS, Thomas R, Tice RR, Vandenberg JJ, Villeneuve DL, Wesselkamper S, Whelan M, Whittaker C, White R, Xia M, Yauk C, Zeise L, Zhao J, DeWoskin RS. 2016. The Next Generation of Risk Assessment multiyear study-highlights of findings, applications to risk assessment, and future directions. Environ Health Perspect 124:1671-1682; http://dx.doi.org/10.1289/EHP233.


Assuntos
Monitoramento Ambiental/métodos , Medição de Risco/métodos , Poluentes Ambientais/toxicidade , Saúde Pública/métodos , Saúde Pública/tendências , Medição de Risco/tendências
12.
Environ Toxicol Chem ; 35(3): 702-16, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26332155

RESUMO

Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds, such as estrogens, which can affect the hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined reproductive effects in fathead minnows exposed for 21 d to a historically estrogenic WWTP effluent. Fathead minnow breeding pairs were held in control water or 1 of 3 effluent concentrations (5%, 20%, and 100%) in a novel onsite, flow-through system providing real-time exposure. The authors examined molecular and biochemical endpoints representing key events along adverse outcome pathways linking estrogen receptor activation and other molecular initiating events to reproductive impairment. In addition, the authors used chemical analysis of the effluent to construct a chemical-gene interaction network to aid in targeted gene expression analyses and identifying potentially impacted biological pathways. Cumulative fecundity was significantly reduced in fish exposed to 100% effluent but increased in those exposed to 20% effluent, the approximate dilution factor in the receiving waters. Plasma vitellogenin concentrations in males increased in a dose-dependent manner with effluent concentration; however, male fertility was not impacted. Although in vitro analyses, analytical chemistry, and biomarker responses confirmed the effluent was estrogenic, estrogen receptor agonists were unlikely the primary driver of impaired reproduction. The results provide insights into the significance of pathway-based effects with regard to predicting adverse reproductive outcomes.


Assuntos
Cyprinidae , Disruptores Endócrinos/toxicidade , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/toxicidade , Animais , Disruptores Endócrinos/análise , Feminino , Expressão Gênica/efeitos dos fármacos , Gônadas/efeitos dos fármacos , Gônadas/patologia , Masculino , Reprodução/efeitos dos fármacos , Esteroides/biossíntese , Vitelogeninas/biossíntese , Poluentes Químicos da Água/análise , Qualidade da Água
13.
Environ Toxicol Chem ; 33(8): 1849-57, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24831736

RESUMO

Animal waste from livestock farming operations can contain varying levels of natural and synthetic androgens and/or estrogens, which can contaminate surrounding waterways. In the present study, surface stream water was collected from 6 basins containing livestock farming operations. Aqueous concentrations of 12 hormones were determined via chemical analyses. Relative androgenic and estrogenic activity was measured using in vitro cell assays (MDA-kb2 and T47D-Kbluc assays, respectively). In parallel, 48-h static-renewal in vivo exposures were conducted to examine potential endocrine-disrupting effects in fathead minnows. Mature fish were exposed to surface water dilutions (0%, 25%, 50%, and 100%) and 10-ng/L of 17α-ethynylestradiol or 50-ng/L of 17ß-trenbolone as positive controls. Hepatic expression of vitellogenin and estrogen receptor α mRNA, gonadal ex vivo testosterone and 17ß-estradiol production, and plasma vitellogenin concentrations were examined. Potentially estrogenic and androgenic steroids were detected at low nanogram per liter concentrations. In vitro estrogenic activity was detected in all samples, whereas androgenic activity was detected in only 1 sample. In vivo exposures to the surface water had no significant dose-dependent effect on any of the biological endpoints, with the exception of increased male testosterone production in 1 exposure. The present study, which combines analytical chemistry measurements, in vitro bioassays, and in vivo fish exposures, highlights the integrated value and future use of a combination of techniques to obtain a comprehensive characterization of an environmental chemical mixture.


Assuntos
Agricultura , Bioensaio/métodos , Cyprinidae/metabolismo , Ecotoxicologia/métodos , Exposição Ambiental/efeitos adversos , Peixes , Esterco/análise , Animais , Disruptores Endócrinos/análise , Disruptores Endócrinos/toxicidade , Exposição Ambiental/análise , Feminino , Peixes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Gônadas/efeitos dos fármacos , Gônadas/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Gado , Masculino , Receptores de Estrogênio/genética , Rios/química , Esteroides/biossíntese , Vitelogeninas/sangue , Vitelogeninas/genética , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
14.
Environ Toxicol Chem ; 33(7): 1584-95, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24668901

RESUMO

Assessment of potential risks of complex contaminant mixtures in the environment requires integrated chemical and biological approaches. In support of the US Great Lakes Restoration Initiative, the US Environmental Protection Agency lab in Duluth, MN, is developing these types of methods for assessing possible risks of aquatic contaminants in near-shore Great Lakes (USA) sites. One component involves an exposure system for caged fathead minnow (Pimephales promelas) adults suitable for the wide range of habitat and deployment situations encountered in and around the Great Lakes. To complement the fish exposure system, the authors developed an automated device for collection of composite water samples that could be simultaneously deployed with the cages and reflect a temporally integrated exposure of the animals. The present study describes methodological details of the design, construction, and deployment of a flexible yet comparatively inexpensive (<600 USD) caged-fish/autosampler system. The utility and performance of the system were demonstrated with data collected from deployments at several Great Lakes sites. For example, over 3 field seasons, only 2 of 130 deployed cages were lost, and approximately 99% of successfully deployed adult fish were recovered after exposures of 4 d or longer. A number of molecular, biochemical, and apical endpoints were successfully measured in recovered animals, changes in which reflected known characteristics of the study sites (e.g., upregulation of hepatic genes involved in xenobiotic metabolism in fish held in the vicinity of wastewater treatment plants). The automated composite samplers proved robust with regard to successful water collection (>95% of deployed units in the latest field season), and low within- and among-unit variations were found relative to programmed collection volumes. Overall, the test system has excellent potential for integrated chemical-biological monitoring of contaminants in a variety of field settings.


Assuntos
Cyprinidae/fisiologia , Monitoramento Ambiental/instrumentação , Poluentes Químicos da Água/metabolismo , Animais , Ecossistema , Monitoramento Ambiental/economia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Estados Unidos
15.
Environ Toxicol Chem ; 32(7): 1592-603, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23504660

RESUMO

Credible ecological risk assessments often need to include analysis of population-level impacts. In the present study, a predictive model was developed to investigate population dynamics for white sucker (Catostomus commersoni) exposed to pulp mill effluent at a well-studied site in Jackfish Bay, Lake Superior, Canada. The model uniquely combines a Leslie population projection matrix and the logistic equation to translate changes in the fecundity and the age structure of a breeding population of white sucker exposed to pulp mill effluent to alterations in population growth rate. Application of this density-dependent population projection model requires construction of a life table for the organism of interest, a measure of carrying capacity, and an estimation of the effect of stressors on vital rates. A white sucker population existing at carrying capacity and subsequently exposed to pulp mill effluent equivalent to a documented exposure experienced during the period 1988 to 1994 in Jackfish Bay would be expected to exhibit a 34% to 51% annual decrease in recruitment during the first 5 yr of exposure and approach a population size of 71% of carrying capacity. The Jackfish Bay study site contains monitoring data for biochemical endpoints in white sucker, including circulating sex steroid concentrations, that could be combined with population modeling to utilize the model demonstrated at the Jackfish Bay study site for investigation of other white sucker populations at sites that are less data-rich.


Assuntos
Cipriniformes/fisiologia , Monitoramento Ambiental , Poluentes Químicos da Água/toxicidade , Animais , Canadá , Feminino , Resíduos Industriais , Masculino , Papel , Medição de Risco , Madeira
16.
Environ Sci Technol ; 46(1): 51-9, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-21786754

RESUMO

Effects of bisphenol A (BPA) on ovarian transcript profiles as well as targeted end points with endocrine/reproductive relevance were examined in two fish species, fathead minnow (Pimephales promelas) and zebrafish (Danio rerio), exposed in parallel using matched experimental designs. Four days of waterborne exposure to 10 µg BPA/L caused significant vitellogenin induction in both species. However, zebrafish were less sensitive to effects on hepatic gene expression and steroid production than fathead minnow and the magnitude of vitellogenin induction was more modest (i.e., 3-fold compared to 13,000-fold in fathead minnow). The concentration-response at the ovarian transcriptome level was nonmonotonic and violated assumptions that underlie proposed methods for estimating hazard thresholds from transcriptomic results. However, the nonmonotonic profile was consistent among species and there were nominal similarities in the functions associated with the differentially expressed genes, suggesting potential activation of common pathway perturbation motifs in both species. Overall, the results provide an effective case study for considering the potential application of ecotoxicogenomics to ecological risk assessments and provide novel comparative data regarding effects of BPA in fish.


Assuntos
Cyprinidae/genética , Ecotoxicologia/métodos , Metagenômica/métodos , Fenóis/toxicidade , Testes de Toxicidade , Peixe-Zebra/genética , Animais , Compostos Benzidrílicos , Cyprinidae/sangue , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal , Reprodutibilidade dos Testes , Medição de Risco , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Vitelogeninas/sangue
17.
Environ Sci Technol ; 45(7): 3090-5, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21361318

RESUMO

Certain endocrine-active toxicants have been reported to completely sex reverse both male and female individuals in amphibian, avian, fish, invertebrate, and reptile species, resulting in a phenotype indistinguishable from unaffected individuals. Detection of low-level sex reversal often requires large numbers of organisms to achieve the necessary statistical power, especially in those species with predominantly genetic sex determination and cryptic/homomorphic sex chromosomes. Here we describe a method for determining the genetic sex in the commonly used ecotoxicological model, the fathead minnow (Pimephales promelas). Analysis of amplified fragment length polymorphisms (AFLP) in a spawn of minnows resulted in detection of 10 sex-linked AFLPs, which were isolated and sequenced. No recombination events were observed with any sex-linked AFLP in the animals examined (n=112). A polymerase chain reaction (PCR) method was then developed that determined the presence of one of these sex-linked polymorphisms for utilization in routine toxicological testing. Analyses of additional spawns from our in-house culture indicate that fathead minnows utilize a XY sex determination strategy and confirm that these markers can be used to genotype sex; however, this method is currently limited to use in laboratory studies in which breeders possess a defined genetic makeup. The genotyping method described herein can be incorporated into endocrine toxicity assays that examine the effects of chemicals on gonad differentiation.


Assuntos
Cyprinidae/genética , Disruptores Endócrinos/toxicidade , Análise para Determinação do Sexo/métodos , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Análise Custo-Benefício , Cyprinidae/fisiologia , Feminino , Genótipo , Masculino , Polimorfismo de Fragmento de Restrição/genética , Análise para Determinação do Sexo/economia , Testes de Toxicidade/métodos
18.
Environ Toxicol Chem ; 30(2): 319-29, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21082714

RESUMO

The impact of exposure by water to a model androgen, 17ß-trenbolone (TRB), was assessed in fathead minnows using an integrated molecular approach. This included classical measures of endocrine exposure such as impacts on testosterone (T), 17ß-estradiol (E2), and vitellogenin (VTG) concentrations in plasma, as well as determination of effects on the hepatic metabolome using proton nuclear magnetic resonance spectroscopy. In addition, the rates of production of T and E2 in ovary explants were measured, as were changes in a number of ovarian gene transcripts hypothesized to be relevant to androgen exposure. A temporally intensive 16-d test design was used to assess responses both during and after the TRB exposure (i.e., depuration/recovery). This strategy revealed time-dependent responses in females (little impact was seen in the males), in which changes in T and E2 production in the ovary, as well as levels in plasma, declined rapidly (within 1 d), followed shortly by a return to control levels. Gene expression measurements revealed dynamic control of transcript levels in the ovary and suggested potential mechanisms for compensation during the exposure phase of the test. Proton nuclear magnetic resonance spectroscopy revealed a number of hepatic metabolite changes that exhibited strong time and dose dependence. Furthermore, TRB appeared to induce the hepatic metabolome of females to become more like that of males at both high test concentrations of TRB (472 ng/L) and more environmentally relevant levels (33 ng/L).


Assuntos
Anabolizantes/toxicidade , Cyprinidae/genética , Cyprinidae/metabolismo , Acetato de Trembolona/análogos & derivados , Acetato de Trembolona/toxicidade , Animais , Estradiol/sangue , Feminino , Regulação da Expressão Gênica , Fígado/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Metaboloma , Ovário/metabolismo , Testosterona/sangue , Vitelogeninas/sangue
19.
Environ Toxicol Chem ; 30(1): 64-76, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20963853

RESUMO

Maintaining the viability of populations of plants and animals is a key focus for environmental regulation. Population-level responses integrate the cumulative effects of chemical stressors on individuals as those individuals interact with and are affected by their conspecifics, competitors, predators, prey, habitat, and other biotic and abiotic factors. Models of population-level effects of contaminants can integrate information from lower levels of biological organization and feed that information into higher-level community and ecosystem models. As individual-level endpoints are used to predict population responses, this requires that biological responses at lower levels of organization be translated into a form that is usable by the population modeler. In the current study, we describe how mechanistic data, as captured in adverse outcome pathways (AOPs), can be translated into modeling focused on population-level risk assessments. First, we describe the regulatory context surrounding population modeling, risk assessment and the emerging role of AOPs. Then we present a succinct overview of different approaches to population modeling and discuss the types of data needed for these models. We describe how different key biological processes measured at the level of the individual serve as the linkage, or bridge, between AOPs and predictions of population status, including consideration of community-level interactions and genetic adaptation. Several case examples illustrate the potential for use of AOPs in population modeling and predictive ecotoxicology. Finally, we make recommendations for focusing toxicity studies to produce the quantitative data needed to define AOPs and to facilitate their incorporation into population modeling.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/toxicidade , Acetilcolinesterase/metabolismo , Animais , ATPases Transportadoras de Cálcio/metabolismo , Ecossistema , Modelos Biológicos , Dinâmica Populacional , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores X de Retinoides/metabolismo , Medição de Risco/métodos , Testes de Toxicidade , Vitelogênese/efeitos dos fármacos
20.
Environ Toxicol Chem ; 29(3): 730-41, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20821501

RESUMO

Ecological risk assessors face increasing demands to assess more chemicals, with greater speed and accuracy, and to do so using fewer resources and experimental animals. New approaches in biological and computational sciences may be able to generate mechanistic information that could help in meeting these challenges. However, to use mechanistic data to support chemical assessments, there is a need for effective translation of this information into endpoints meaningful to ecological risk-effects on survival, development, and reproduction in individual organisms and, by extension, impacts on populations. Here we discuss a framework designed for this purpose, the adverse outcome pathway (AOP). An AOP is a conceptual construct that portrays existing knowledge concerning the linkage between a direct molecular initiating event and an adverse outcome at a biological level of organization relevant to risk assessment. The practical utility of AOPs for ecological risk assessment of chemicals is illustrated using five case examples. The examples demonstrate how the AOP concept can focus toxicity testing in terms of species and endpoint selection, enhance across-chemical extrapolation, and support prediction of mixture effects. The examples also show how AOPs facilitate use of molecular or biochemical endpoints (sometimes referred to as biomarkers) for forecasting chemical impacts on individuals and populations. In the concluding sections of the paper, we discuss how AOPs can help to guide research that supports chemical risk assessments and advocate for the incorporation of this approach into a broader systems biology framework.


Assuntos
Ecotoxicologia , Medição de Risco , Animais , Dermatite Fototóxica , Humanos , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Receptores de Estrogênio/efeitos dos fármacos , Pesquisa , Estupor/induzido quimicamente , Biologia de Sistemas , Vitelogênese/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA