Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
BMC Cardiovasc Disord ; 22(1): 49, 2022 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-35152886

RESUMO

BACKGROUND: In a Phase I study treatment with the serum amyloid P component (SAP) depleter miridesap followed by monoclonal antibody to SAP (dezamizumab) showed removal of amyloid from liver, spleen and kidney in patients with systemic amyloidosis. We report results from a Phase 2 study and concurrent immuno-positron emission tomography (PET) study assessing efficacy, pharmacodynamics, pharmacokinetics, safety and cardiac uptake (of dezamizumab) following the same intervention in patients with cardiac amyloidosis. METHODS: Both were uncontrolled open-label studies. After SAP depletion with miridesap, patients received ≤ 6 monthly doses of dezamizumab in the Phase 2 trial (n = 7), ≤ 2 doses of non-radiolabelled dezamizumab plus [89Zr]Zr-dezamizumab (total mass dose of 80 mg at session 1 and 500 mg at session 2) in the immuno-PET study (n = 2). Primary endpoints of the Phase 2 study were changed from baseline to follow-up (at 8 weeks) in left ventricular mass (LVM) by cardiac magnetic resonance imaging and safety. Primary endpoint of the immuno-PET study was [89Zr]Zr-dezamizumab cardiac uptake assessed via PET. RESULTS: Dezamizumab produced no appreciable or consistent reduction in LVM nor improvement in cardiac function in the Phase 2 study. In the immuno-PET study, measurable cardiac uptake of [89Zr]Zr-dezamizumab, although seen in both patients, was moderate to low. Uptake was notably lower in the patient with higher LVM. Treatment-associated rash with cutaneous small-vessel vasculitis was observed in both studies. Abdominal large-vessel vasculitis after initial dezamizumab dosing (300 mg) occurred in the first patient with immunoglobulin light chain amyloidosis enrolled in the Phase 2 study. Symptom resolution was nearly complete within 24 h of intravenous methylprednisolone and dezamizumab discontinuation; abdominal computed tomography imaging showed vasculitis resolution by 8 weeks. CONCLUSIONS: Unlike previous observations of visceral amyloid reduction, there was no appreciable evidence of amyloid removal in patients with cardiac amyloidosis in this Phase 2 trial, potentially related to limited cardiac uptake of dezamizumab as demonstrated in the immuno-PET study. The benefit-risk assessment for dezamizumab in cardiac amyloidosis was considered unfavourable after the incidence of large-vessel vasculitis and development for this indication was terminated. Trial registration NCT03044353 (2 February 2017) and NCT03417830 (25 January 2018).


Assuntos
Amiloidose , Anticorpos Monoclonais , Ácidos Carboxílicos , Cardiomiopatias , Tomografia por Emissão de Pósitrons , Pirrolidinas , Componente Amiloide P Sérico , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Amiloidose/sangue , Amiloidose/diagnóstico por imagem , Amiloidose/tratamento farmacológico , Amiloidose/imunologia , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/uso terapêutico , Ácidos Carboxílicos/efeitos adversos , Ácidos Carboxílicos/uso terapêutico , Cardiomiopatias/sangue , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/imunologia , Quimioterapia Combinada , Imageamento por Ressonância Magnética , Miocárdio/metabolismo , Miocárdio/patologia , Valor Preditivo dos Testes , Pirrolidinas/efeitos adversos , Pirrolidinas/uso terapêutico , Componente Amiloide P Sérico/antagonistas & inibidores , Componente Amiloide P Sérico/imunologia , Fatores de Tempo , Resultado do Tratamento , Reino Unido , Estados Unidos , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
2.
Nucl Med Biol ; 88-89: 73-85, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32805638

RESUMO

INTRODUCTION: Early detection of liver fibrosis and monitoring response to treatment crucial for the management of patients are currently not feasible in clinical practice. Platelet derived growth factor receptor ß (PDGFR-ß) expression is regarded as a potential biomarker to determine the stages of fibrotic diseases including liver fibrosis. [68Ga]Ga-BOT5035 comprising a bicyclic peptide was developed for specific targeting of PDGFR-ß overexpressed in pathological fibrosis. The realization of microdosing phase 0 study using [68Ga]Ga-BOT5035 positron emission tomography required automated good manufacturing practice (GMP) compliant production of [68Ga]Ga-BOT5035 presented herein. Moreover, the investigation of radiation dosimetry was conducted to ensure possibility of multiple annual examinations for disease monitoring in clinical setup. METHODS: The active pharmaceutical ingredient starting material BOT5035 (GMP grade) was provided by BiOrion Technologies BV. The 68Ga-labelling process was developed and automated using synthesis platform (Modular-Lab PharmTrace, Eckert & Ziegler), disposable cassettes for 68Ga-labelling, and pharmaceutical grade 68Ge/68Ga generator (GalliaPharm®) purchased from Eckert & Ziegler. Radiolysis sensitive BOT5035 required development and systematic optimization of the labelling synthesis parameters such as time, temperature, precursor concentration, radical scavenger, buffer concentration and pH. The validation process was conducted with regard to the product quality and quantity, as well as production reproducibility. Human organ equivalent doses and total body effective doses were calculated using Organ Level Internal Dose Assessment Code software (OLINDA/EXM 1.1), based on ex vivo organ distribution in Sprague-Dawley rats. RESULTS: The GMP compliant automated production of [68Ga]Ga-BOT5035 with on-line documentation demonstrated high reproducibility. The time for the labelling synthesis and quality control was approximately 60 min. The non-decay corrected radiochemical yield and radiochemical purity of the radiopharmaceutical were 43.7 ±â€¯7.6% (n = 3, process validation) and 97.7 ±â€¯0.4% (n = 3, process validation), respectively. Predefined acceptance criteria were met for the sterility, endotoxins level, radionuclidic purity and residual solvent content. The stability at ambient temperature was controlled for 120 min with approved results. Ex vivo organ distribution data revealed fast blood clearance and washout from most of the organs. The dose-limiting organs were kidney and bone marrow. The total effective dose as limiting parameter would allow for up to 3-4 PET scans per annum. CONCLUSION: The fully automated and GMP compliant production of [68Ga]Ga-BOT5035 was developed and thoroughly validated. The radiopharmaceutical was approved by Swedish Medicinal Products Agency and the Ethical Review Authority for the Phase 0 clinical study of the quantitative imaging of liver fibrosis. Human dosimetry calculations extrapolated from animal experiment indicated possibility of 3-4 PET examinations per year.


Assuntos
Indústria Farmacêutica/normas , Radioisótopos de Gálio/metabolismo , Cirrose Hepática/patologia , Peptídeos Cíclicos/metabolismo , Compostos Radiofarmacêuticos/metabolismo , Animais , Ensaios Clínicos como Assunto , Feminino , Humanos , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Tomografia por Emissão de Pósitrons , Ratos , Ratos Sprague-Dawley
3.
Sci Rep ; 9(1): 14960, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628379

RESUMO

The glucagon receptor (GCGR) is an emerging target in anti-diabetic therapy. Reliable biomarkers for in vivo activity on the GCGR, in the setting of dual glucagon-like peptide 1/glucagon (GLP-1/GCG) receptor agonism, are currently unavailable. Here, we investigated [68Ga]Ga-DO3A-S01-GCG as a biomarker for GCGR occupancy in liver, the tissue with highest GCGR expression, in non-human primates (NHP) by PET. [68Ga]Ga-DO3A-S01-GCG was evaluated by dynamic PET in NHPs by a dose escalation study design, where up to 67 µg/kg DO3A-S01-GCG peptide mass was co-injected. The test-retest reproducibility of [68Ga]Ga-DO3A-S01-GCG binding in liver was evaluated. Furthermore, we investigated the effect of pre-treatment with acylated glucagon agonist 1-GCG on [68Ga]Ga-DO3A-S01-GCG binding in liver. [68Ga]Ga-DO3A-S01-GCG bound to liver in vivo in a dose-dependent manner. Negligible peptide mass effect was observed for DO3A-S01-GCG doses <0.2 µg/kg. In vivo Kd for [68Ga]Ga-DO3A-S01-GCG corresponded to 0.7 µg/kg, which indicates high potency. The test-retest reproducibility for [68Ga]Ga-DO3A-S01-GCG binding in liver was 5.7 ± 7.9%. Pre-treatment with 1-GCG, an acylated glucagon agonist, resulted in a GCGR occupancy of 61.5 ± 9.1% in liver. Predicted human radiation dosimetry would allow for repeated annual [68Ga]Ga-DO3A-S01-GCG PET examinations. In summary, PET radioligand [68Ga]Ga-DO3A-S01-GCG is a quantitative biomarker of in vivo GCGR occupancy.


Assuntos
Biomarcadores/metabolismo , Receptores de Glucagon/metabolismo , Animais , Feminino , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Ligantes , Fígado/diagnóstico por imagem , Fígado/metabolismo , Macaca fascicularis , Masculino , Peptídeos/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Ligação Proteica , Radiometria , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Baço/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA