Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 26(8): 1999-2010, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25589610

RESUMO

Progressive CKD is generally detected at a late stage by a sustained decline in eGFR and/or the presence of significant albuminuria. With the aim of early and improved risk stratification of patients with CKD, we studied urinary peptides in a large cross-sectional multicenter cohort of 1990 individuals, including 522 with follow-up data, using proteome analysis. We validated that a previously established multipeptide urinary biomarker classifier performed significantly better in detecting and predicting progression of CKD than the current clinical standard, urinary albumin. The classifier was also more sensitive for identifying patients with rapidly progressing CKD. Compared with the combination of baseline eGFR and albuminuria (area under the curve [AUC]=0.758), the addition of the multipeptide biomarker classifier significantly improved CKD risk prediction (AUC=0.831) as assessed by the net reclassification index (0.303±-0.065; P<0.001) and integrated discrimination improvement (0.058±0.014; P<0.001). Correlation of individual urinary peptides with CKD stage and progression showed that the peptides that associated with CKD, irrespective of CKD stage or CKD progression, were either fragments of the major circulating proteins, suggesting failure of the glomerular filtration barrier sieving properties, or different collagen fragments, suggesting accumulation of intrarenal extracellular matrix. Furthermore, protein fragments associated with progression of CKD originated mostly from proteins related to inflammation and tissue repair. Results of this study suggest that urinary proteome analysis might significantly improve the current state of the art of CKD detection and outcome prediction and that identification of the urinary peptides allows insight into various ongoing pathophysiologic processes in CKD.


Assuntos
Peptídeos/urina , Insuficiência Renal Crônica/urina , Adulto , Idoso , Biomarcadores/urina , Estudos de Coortes , Progressão da Doença , Feminino , Taxa de Filtração Glomerular , Humanos , Masculino , Pessoa de Meia-Idade
2.
PLoS One ; 9(5): e96955, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24817014

RESUMO

Chronic kidney disease (CKD) is part of a number of systemic and renal diseases and may reach epidemic proportions over the next decade. Efforts have been made to improve diagnosis and management of CKD. We hypothesised that combining metabolomic and proteomic approaches could generate a more systemic and complete view of the disease mechanisms. To test this approach, we examined samples from a cohort of 49 patients representing different stages of CKD. Urine samples were analysed for proteomic changes using capillary electrophoresis-mass spectrometry and urine and plasma samples for metabolomic changes using different mass spectrometry-based techniques. The training set included 20 CKD patients selected according to their estimated glomerular filtration rate (eGFR) at mild (59.9±16.5 mL/min/1.73 m2; n = 10) or advanced (8.9±4.5 mL/min/1.73 m2; n = 10) CKD and the remaining 29 patients left for the test set. We identified a panel of 76 statistically significant metabolites and peptides that correlated with CKD in the training set. We combined these biomarkers in different classifiers and then performed correlation analyses with eGFR at baseline and follow-up after 2.8±0.8 years in the test set. A solely plasma metabolite biomarker-based classifier significantly correlated with the loss of kidney function in the test set at baseline and follow-up (ρ = -0.8031; p<0.0001 and ρ = -0.6009; p = 0.0019, respectively). Similarly, a urinary metabolite biomarker-based classifier did reveal significant association to kidney function (ρ = -0.6557; p = 0.0001 and ρ = -0.6574; p = 0.0005). A classifier utilising 46 identified urinary peptide biomarkers performed statistically equivalent to the urinary and plasma metabolite classifier (ρ = -0.7752; p<0.0001 and ρ = -0.8400; p<0.0001). The combination of both urinary proteomic and urinary and plasma metabolic biomarkers did not improve the correlation with eGFR. In conclusion, we found excellent association of plasma and urinary metabolites and urinary peptides with kidney function, and disease progression, but no added value in combining the different biomarkers data.


Assuntos
Rim/fisiopatologia , Metabolômica , Proteômica , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/fisiopatologia , Idoso , Biomarcadores/sangue , Biomarcadores/urina , Progressão da Doença , Feminino , Seguimentos , Taxa de Filtração Glomerular , Humanos , Masculino , Prognóstico , Insuficiência Renal Crônica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA