Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cells ; 11(14)2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35883697

RESUMO

Impairments in cerebral autoregulation (CA) are related to poor clinical outcome. Near infrared spectroscopy (NIRS) is a non-invasive technique applied to estimate CA. Our general purpose was to study the clinical feasibility of a previously published 'NIRS-only' CA methodology in a critically ill intensive care unit (ICU) population and determine its relationship with clinical outcome. Bilateral NIRS measurements were performed for 1-2 h. Data segments of ten-minutes were used to calculate transfer function analyses (TFA) CA estimates between high frequency oxyhemoglobin (oxyHb) and deoxyhemoglobin (deoxyHb) signals. The phase shift was corrected for serial time shifts. Criteria were defined to select TFA phase plot segments (segments) with 'high-pass filter' characteristics. In 54 patients, 490 out of 729 segments were automatically selected (67%). In 34 primary neurology patients the median (q1-q3) low frequency (LF) phase shift was higher in 19 survivors compared to 15 non-survivors (13° (6.3-35) versus 0.83° (-2.8-13), p = 0.0167). CA estimation using the NIRS-only methodology seems feasible in an ICU population using segment selection for more robust and consistent CA estimations. The 'NIRS-only' methodology needs further validation, but has the advantage of being non-invasive without the need for arterial blood pressure monitoring.


Assuntos
Circulação Cerebrovascular , Espectroscopia de Luz Próxima ao Infravermelho , Estado Terminal , Estudos Transversais , Homeostase/fisiologia , Humanos , Estudos Prospectivos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
2.
J Appl Physiol (1985) ; 133(3): 585-592, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35796613

RESUMO

The cerebral pressure reactivity index (PRx), through intracranial pressure (ICP) measurements, informs clinicians about the cerebral autoregulation (CA) status in adult-sedated patients with traumatic brain injury (TBI). Using PRx in clinical practice is currently limited by variability over shorter monitoring periods. We applied an innovative method to reduce the PRx variability by ventilator-induced slow (1/min) positive end-expiratory pressure (PEEP) oscillations. We hypothesized that, as seen in a previous animal model, the PRx variability would be reduced by inducing slow arterial blood pressure (ABP) and ICP oscillations without other clinically relevant physiological changes. Patients with TBI were ventilated with a static PEEP for 30 min (PRx period) followed by a 30-min period of slow [1/min (0.0167 Hz)] +5 cmH2O PEEP oscillations (induced (iPRx period). Ten patients with TBI were included. No clinical monitoring was discontinued and no additional interventions were required during the iPRx period. The PRx variability [measured as the standard deviation (SD) of PRx] decreased significantly during the iPRx period from 0.25 (0.22-0.30) to 0.14 (0.09-0.17) (P = 0.006). There was a power increase around the induced frequency (1/min) for both ABP and ICP (P = 0.002). In conclusion, 1/min PEEP-induced oscillations reduced the PRx variability in patients with TBI with ICP levels <22 mmHg. No other clinically relevant physiological changes were observed. Reduced PRx variability might improve CA-guided perfusion management by reducing the time to find "optimal" perfusion pressure targets. Larger studies with prolonged periods of PEEP-induced oscillations are required to take it to routine use.NEW & NOTEWORTHY Cerebral autoregulation assessment requires sufficient slow arterial blood pressure (ABP) waves. However, spontaneous ABP waves may be insufficient for reliable cerebral autoregulation estimations. Therefore, we applied a ventilator "sigh-function" to generate positive end-expiratory pressure oscillations that induce slow ABP waves. This method demonstrated a reduced variability of the pressure reactivity index, commonly used as continuous cerebral autoregulation measure in a traumatic brain injury population.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Animais , Pressão Arterial/fisiologia , Circulação Cerebrovascular/fisiologia , Pressão Intracraniana/fisiologia , Respiração com Pressão Positiva
3.
J Neuroimaging ; 31(5): 814-825, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34270144

RESUMO

BACKGROUND AND PURPOSE: Reported cutoff values of the optic nerve sheath diameter (ONSD) for the diagnosis of elevated intracranial pressure (ICP) are inconsistent. This hampers ONSD as a possible noninvasive bedside monitoring tool for ICP. Because the influence of methodological differences on variations in cutoff values is unknown, we performed a narrative review to identify discrepancies in ONSD assessment methodologies and to investigate their effect on reported ONSD values. METHODS: We used a structured and quantitative approach in which each ONSD methodology found in the reviewed articles was categorized based on the characteristic appearance of the ultrasound images and ultrasound marker placement. Subsequently, we investigated the influence of the different methodologies on ONSD values by organizing the ONSDs with respect to these categories. RESULTS: In a total of 63 eligible articles, we could determine the applied ONSD assessment methodology. Reported ultrasound images either showed the optic nerve and its sheath as a dark region with hyperechoic striped band at its edges or as a single dark region surrounded by lighter retrobulbar fat. Four different ultrasound marker positions were used to delineate the optic nerve sheath, which resulted in different ONSD values and more importantly, different sensitivities to changes in ICP. CONCLUSIONS: Based on our observations, we recommend to place ultrasound markers at the outer edges of the hyperechoic striped bands or at the transitions from the single dark region to the hyperechoic retrobulbar fat because these locations yielded the highest sensitivity of ONSD measurements for increased ICP.


Assuntos
Hipertensão Intracraniana , Ultrassonografia Doppler Transcraniana , Humanos , Pressão Intracraniana , Nervo Óptico/diagnóstico por imagem , Estudos Prospectivos , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA