RESUMO
Secondary findings (SFs) identified through genomic sequencing (GS) can offer a wide range of health benefits to patients. Resource and capacity constraints pose a challenge to their clinical management; therefore, clinical workflows are needed to optimise the health benefits of SFs. In this paper, we describe a model we created for the return and referral of all clinically significant SFs, beyond medically actionable results, from GS. As part of a randomised controlled trial evaluating the outcomes and costs of disclosing all clinically significant SFs from GS, we consulted genetics and primary care experts to determine a feasible workflow to manage SFs. Consensus was sought to determine appropriate clinical recommendations for each category of SF and which clinician specialist would provide follow-up care. We developed a communication and referral plan for each category of SFs. This involved referrals to specialised clinics, such as an Adult Genetics clinic, for highly penetrant medically actionable findings. Common and non-urgent SFs, such as pharmacogenomics and carrier status results for non-family planning participants, were directed back to the family physician (FP). SF results and recommendations were communicated directly to participants to respect autonomy and to their FPs to support follow-up of SFs. We describe a model for the return and referral of all clinically significant SFs to facilitate the utility of GS and promote the health benefits of SFs. This may serve as a model for others returning GS results transitioning participants from research to clinical settings.
Assuntos
Genômica , Encaminhamento e Consulta , Adulto , Humanos , Custos e Análise de Custo , Consenso , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
BACKGROUND & AIMS: The province of Ontario, Canada is considering immunohistochemical followed by cascade analyses of all patients who received a diagnosis of colorectal cancer (CRC) at an age younger than 70 years to identify individuals with Lynch syndrome. We evaluated the costs and benefits of testing for Lynch syndrome and determined the optimal surveillance interval for first-degree relatives (FDRs) found to have Lynch syndrome. METHODS: We developed a patient flow diagram to determine costs and yield of immunohistochemical testing for Lynch syndrome in CRC cases and, for those found to have Lynch syndrome, their FDRs, accounting for realistic uptake. Subsequently, we used the MISCAN-colon model to compare costs and benefits of annual, biennial, and triennial surveillance in FDRs identified with Lynch syndrome vs colonoscopy screening every 10 years (usual care for individuals without a diagnosis of Lynch syndrome). RESULTS: Testing 1000 CRC cases was estimated to identify 20 CRC index cases and 29 FDRs with Lynch syndrome at a cost of $310,274. Despite the high cost of Lynch syndrome tests, offering the FDRs with Lynch syndrome biennial colonoscopy surveillance was cost-effective at $8785 per life-year gained compared with usual care because of a substantial increase in life-years gained (+122%) and cost savings in CRC care. Triennial surveillance was more costly and less effective, and annual surveillance showed limited additional benefit compared with biennial surveillance. CONCLUSIONS: Immunohistochemical testing for Lynch syndrome in persons younger than 70 years who received a diagnosis of CRC and then testing FDRs of those found to have Lynch syndrome provide a good balance between costs and long-term benefits. Colonoscopy surveillance every 2 years is the optimal surveillance interval for patients with Lynch syndrome.
Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais , Idoso , Colonoscopia , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Análise Custo-Benefício , Detecção Precoce de Câncer , Humanos , Programas de RastreamentoRESUMO
INTRODUCTION: Genomic sequencing has rapidly transitioned into clinical practice, improving diagnosis and treatment options for patients with hereditary disorders. However, large-scale implementation of genomic sequencing faces challenges, especially with regard to the return of incidental results, which refer to genetic variants uncovered during testing that are unrelated to the primary disease under investigation, but of potential clinical significance. High-quality evidence evaluating health outcomes and costs of receiving incidental results is critical for the adoption of genomic sequencing into clinical care and to understand the unintended consequences of adoption of genomic sequencing. We aim to evaluate the health outcomes and costs of receiving incidental results for patients undergoing genomic sequencing. METHODS AND ANALYSIS: We will compare health outcomes and costs of receiving, versus not receiving, incidental results for adult patients with cancer undergoing genomic sequencing in a mixed-methods randomised controlled trial. Two hundred and sixty patients who have previously undergone first or second-tier genetic testing for cancer and received uninformative results will be recruited from familial cancer clinics in Toronto, Ontario. Participants in both arms will receive cancer-related results. Participants in the intervention arm have the option to receive incidental results. Our primary outcome is psychological distress at 2 weeks following return of results. Secondary outcomes include behavioural consequences, clinical and personal utility assessed over the 12 months after results are returned and health service use and costs at 12 months and 5 years. A subset of participants and providers will complete qualitative interviews about utility of incidental results. ETHICS AND DISSEMINATION: This study has been approved by Clinical Trials Ontario Streamlined Research Ethics Review System that provides ethical review and oversight for multiple sites participating in the same clinical trial in Ontario.Results from the trial will be shared through stakeholder workshops, national and international conferences, and peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT03597165.