Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(28): 12575-12584, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38952258

RESUMO

There is a notable lack of continuous monitoring of air pollutants in the Global South, especially for measuring chemical composition, due to the high cost of regulatory monitors. Using our previously developed low-cost method to quantify black carbon (BC) in fine particulate matter (PM2.5) by analyzing reflected red light from ambient particle deposits on glass fiber filters, we estimated hourly ambient BC concentrations with filter tapes from beta attenuation monitors (BAMs). BC measurements obtained through this method were validated against a reference aethalometer between August 2 and 23, 2023 in Addis Ababa, Ethiopia, demonstrating a very strong agreement (R2 = 0.95 and slope = 0.97). We present hourly BC for three cities in sub-Saharan Africa (SSA) and one in North America: Abidjan (Côte d'Ivoire), Accra (Ghana), Addis Ababa (Ethiopia), and Pittsburgh (USA). The average BC concentrations for the measurement period at the Abidjan, Accra, Addis Ababa Central summer, Addis Ababa Central winter, Addis Ababa Jacros winter, and Pittsburgh sites were 3.85 µg/m3, 5.33 µg/m3, 5.63 µg/m3, 3.89 µg/m3, 9.14 µg/m3, and 0.52 µg/m3, respectively. BC made up 14-20% of PM2.5 mass in the SSA cities compared to only 5.6% in Pittsburgh. The hourly BC data at all sites (SSA and North America) show a pronounced diurnal pattern with prominent peaks during the morning and evening rush hours on workdays. A comparison between our measurements and the Goddard Earth Observing System Composition Forecast (GEOS-CF) estimates shows that the model performs well in predicting PM2.5 for most sites but struggles to predict BC at an hourly resolution. Adding more ground measurements could help evaluate and improve the performance of chemical transport models. Our method can potentially use existing BAM networks, such as BAMs at U.S. Embassies around the globe, to measure hourly BC concentrations. The PM2.5 composition data, thus acquired, can be crucial in identifying emission sources and help in effective policymaking in SSA.


Assuntos
Poluentes Atmosféricos , Cidades , Monitoramento Ambiental , Material Particulado , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Material Particulado/análise , África , Carbono/análise , Fuligem/análise
2.
Environ Epidemiol ; 5(3): e155, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34131616

RESUMO

Real-time monitoring of fine particulate matter (PM2.5) concentrations and assessing the health impact are limited in Ethiopia. The objective of this study is to describe current levels of PM2.5 air pollution in Addis Ababa and examine temporal patterns and to consider the health impact of current PM2.5 exposure levels. METHODS: PM2.5 concentrations were measured using a centrally-located Beta Attenuator Monitor (BAM-1022) for 3 years (1 April 2017 to 31 March 2020), with data downloaded biweekly. Deaths attributable to current PM2.5 concentration levels were estimated using the AirQ+ tool. The daily average was estimated using hourly data. RESULTS: The daily mean (SD) PM2.5 concentration was 42.4 µg/m3 (15.98). Two daily extremes were observed: morning (high) and afternoon (low). Sundays had the lowest PM2.5 concentration, while Mondays to Thursdays saw a continuous increase; Fridays showed the highest concentration. Seasons showed marked variation, with the highest values during the wet season. Concentration spikes reflected periods of intensive fuel combustion. A total of 502 deaths (4.44%) were attributable to current air pollution levels referenced to the 35 µg/m3 WHO interim target annual level and 2,043 (17.7%) at the WHO 10 µg/m3 annual guideline. CONCLUSION: PM2.5 daily levels were 1.7 times higher than the WHO-recommended 24-hour guideline. The current annual mean PM2.5 concentration results in a substantial burden of attributable deaths compared to an annual mean of 10 µg/m3. The high PM2.5 level and its variability across days and seasons calls for citywide interventions to promote clean air.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA