Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Altern Lab Anim ; 45(3): 117-158, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28816053

RESUMO

In 2009, the passing of the Family Smoking Prevention and Tobacco Control Act facilitated the establishment of the FDA Center for Tobacco Products (CTP), and gave it regulatory authority over the marketing, manufacture and distribution of tobacco products, including those termed 'modified risk'. On 4-6 April 2016, the Institute for In Vitro Sciences, Inc. (IIVS) convened a workshop conference entitled, In Vitro Exposure Systems and Dosimetry Assessment Tools for Inhaled Tobacco Products, to bring together stakeholders representing regulatory agencies, academia and industry to address the research priorities articulated by the FDA CTP. Specific topics were covered to assess the status of current in vitro smoke and aerosol/vapour exposure systems, as well as the various approaches and challenges to quantifying the complex exposures in in vitro pulmonary models developed for evaluating adverse pulmonary events resulting from tobacco product exposures. The four core topics covered were: a) Tobacco Smoke and E-Cigarette Aerosols; b) Air-Liquid Interface-In Vitro Exposure Systems; c) Dosimetry Approaches for Particles and Vapours/In Vitro Dosimetry Determinations; and d) Exposure Microenvironment/Physiology of Cells. The 2.5-day workshop included presentations from 20 expert speakers, poster sessions, networking discussions, and breakout sessions which identified key findings and provided recommendations to advance these technologies. Here, we will report on the proceedings, recommendations, and outcome of the April 2016 technical workshop, including paths forward for developing and validating non-animal test methods for tobacco product smoke and next generation tobacco product aerosol/vapour exposures. With the recent FDA publication of the final deeming rule for the governance of tobacco products, there is an unprecedented necessity to evaluate a very large number of tobacco-based products and ingredients. The questionable relevance, high cost, and ethical considerations for the use of in vivo testing methods highlight the necessity of robust in vitro approaches to elucidate tobacco-based exposures and how they may lead to pulmonary diseases that contribute to lung exposure-induced mortality worldwide.


Assuntos
Fumar/efeitos adversos , Produtos do Tabaco/efeitos adversos , Testes de Toxicidade/métodos , Aerossóis , Animais , Sistemas Eletrônicos de Liberação de Nicotina/efeitos adversos , Humanos , Técnicas In Vitro , Especificidade da Espécie , Estados Unidos , United States Food and Drug Administration
2.
Part Fibre Toxicol ; 10: 12, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23575443

RESUMO

BACKGROUND: Particle size-selective sampling refers to the collection of particles of varying sizes that potentially reach and adversely affect specific regions of the respiratory tract. Thoracic and respirable fractions are defined as the fraction of inhaled particles capable of passing beyond the larynx and ciliated airways, respectively, during inhalation. In an attempt to afford greater protection to exposed individuals, current size-selective sampling criteria overestimate the population means of particle penetration into regions of the lower respiratory tract. The purpose of our analyses was to provide estimates of the thoracic and respirable fractions for adults and children during typical activities with both nasal and oral inhalation, that may be used in the design of experimental studies and interpretation of health effects evidence. METHODS: We estimated the fraction of inhaled particles (0.5-20 µm aerodynamic diameter) penetrating beyond the larynx (based on experimental data) and ciliated airways (based on a mathematical model) for an adult male, adult female, and a 10 yr old child during typical daily activities and breathing patterns. RESULTS: Our estimates show less penetration of coarse particulate matter into the thoracic and gas exchange regions of the respiratory tract than current size-selective criteria. Of the parameters we evaluated, particle penetration into the lower respiratory tract was most dependent on route of breathing. For typical activity levels and breathing habits, we estimated a 50% cut-size for the thoracic fraction at an aerodynamic diameter of around 3 µm in adults and 5 µm in children, whereas current ambient and occupational criteria suggest a 50% cut-size of 10 µm. CONCLUSIONS: By design, current size-selective sample criteria overestimate the mass of particles generally expected to penetrate into the lower respiratory tract to provide protection for individuals who may breathe orally. We provide estimates of thoracic and respirable fractions for a variety of breathing habits and activities that may benefit the design of experimental studies and interpretation of particle size-specific health effects.


Assuntos
Poluentes Atmosféricos/química , Exposição por Inalação , Sistema Respiratório/metabolismo , Terminologia como Assunto , Toxicologia/normas , Atividades Cotidianas , Adulto , Aerossóis , Fatores Etários , Poluentes Atmosféricos/efeitos adversos , Carga Corporal (Radioterapia) , Criança , Feminino , Humanos , Exposição por Inalação/efeitos adversos , Modelos Lineares , Masculino , Modelos Biológicos , Tamanho da Partícula , Respiração , Medição de Risco , Fatores de Risco , Fatores Sexuais , Toxicologia/classificação , Adulto Jovem
3.
Anat Rec (Hoboken) ; 293(10): 1766-75, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20652937

RESUMO

The laboratory mouse is often used as a human surrogate in aerosol inhalation studies. Morphometric data on the tracheobronchial geometry of three in situ lung casts of the Balb/c mouse lung produced by the Air Pollution Health Effects Laboratory were analyzed in terms of probability density functions and correlations among the different airway parameters. The results of this statistical analysis reveal significant differences in diameters and branching angles between major and minor progeny branching off from the same parent airway at a given airway bifurcation. Number of bronchial airways generations along a given path, expressed by the termination probability, branching angles, and daughter-to-parent diameter ratios indicate that the location of an airway with defined linear airway dimensions within the lung is more appropriately identified by its diameter (or its parent diameter) than by an assigned generation number. We, therefore, recommend classifying the mouse lung airways by their diameters and not by generation numbers, consistent with our previous analysis of the rather monopodial structure of the rat lung (Koblinger et al., J Aerosol Med 1995;8:7­19; Koblinger and Hofmann, J Aerosol Med 1995;8:21­32). Because of lack of corresponding information on respiratory airways, a partly stochastic symmetric acinar airway model was attached to the tracheobronchial model, in which the number of acinar airways along a given path was randomly selected from a measured acinar volume distribution. The computed distributions of the geometric airway parameters and their correlations will be used for random pathway selection of inhaled particles in subsequent Monte Carlo deposition calculations.


Assuntos
Pulmão/anatomia & histologia , Camundongos/anatomia & histologia , Modelos Anatômicos , Animais , Brônquios/anatomia & histologia , Molde por Corrosão , Pulmão/fisiologia , Masculino , Camundongos Endogâmicos BALB C , Método de Monte Carlo , Processos Estocásticos , Traqueia/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA