Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Pollut ; 333: 122090, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37352959

RESUMO

Plastics are omnipresent in our daily life. Unfortunately, the produced plastics will partly end up in the environment including aquatic ecosystems. People often refer to littering or illegal waste dumping as sources of plastic emission to the environment. However, daily-life sources could also, unknowingly, contribute considerably to the total microplastic pollution in the ecosystem. Hence, there is an urgent need to study these potential sources. In this research, two common sources, i.e. domestic wastewater and road run-off from tire and road wear particles, were studied in detail to quantify the relative contribution of both domestic sources towards microplastic pollution in freshwater ecosystems in Flanders, Belgium. This assessment shows that every person (in studied area) emits on average 1145 microplastics (25-1000 µm) daily through domestic wastewater, resulting in a yearly discharge of 418,000 microplastic particles per person. The road run-off samples contained between 0.02 and 9.2 mg tire wear particles per litre per day, which corresponds to an emission of 10.8 mg tire wear particles per driven vehicle km. The gross and net emissions of both above mentioned microplastic sources were extrapolated to the whole Flanders region using an emission model. From the yearly gross microplastic pollution in the domestic wastewater, 623 kg (20%) will be discharged in the freshwater. The highest losses originated from the households that have a private drain or are not (yet) connected to an active wastewater treatment plant. In Flanders, the yearly net microplastic emission into the aquatic environment of tire wear particles is estimated to be 246 tonnes (38%), mainly from the direct run-off from the road surface. Based on the results, specific mitigation measures can be installed to reduce the emission of microplastics towards the freshwater ecosystem. Other sources should be quantified in a similar way for a more holistic strategy to counteract plastic pollution.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Águas Residuárias , Ecossistema , Bélgica , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
2.
Sci Total Environ ; 867: 161536, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36638998

RESUMO

Toxicity tests represent a rapid, user-friendly and cost-effective means to assess the impact of wastewater quality on aquatic ecosystems. There are not many cases where wastewater management standards are set based on various bio-based ecotoxicity values. Here, we tested a novel multitaxon approach to compare standard water quality indices to toxicity metrics obtained from ecotoxicity tests, conducted using aquatic organisms representing several trophic levels (Aliivibrio, Ulva, Daphnia, and Lemna), for 99 industrial wastewater samples from South Korea. For five wastewater samples, the concentrations of Se, Zn, or Ni exceeded the permissible limits (1, 5, and 3 mg L-1, respectively). All the four physiochemical water quality indices tested were positively correlated with Se and Pb concentrations. The toxicity unit (TU) scores indicated a declining sensitivity to pollutants, in the order Lemna (2.87) >Daphnia (2.24) >Aliivibrio (1.78) >Ulva (1.42). Significant correlations were observed between (1) Cd and Ni, and Aliivibrio, (2) Cu and Daphnia, (3) Cd, Cu, Zn, and Cr and Lemna, and (4) Cu, Zn, and Ni and Ulva. Daphnia-Lemna and Lemna-Ulva were found to be good indicators of ecologically harmful Se and Ni contents in wastewater, respectively. We suggest that regulatory thresholds based on these bioassays should be set at TU = 1 for all the species or at TU = 1 for Aliivibrio and Ulva and TU = 2 for Daphnia and Lemna, if the number of companies whose wastewater discharge exceeds the allowable TU levels is <1 % or 5 % of the total number of industries, respectively. Taken together, these findings could help in establishing a rapid, ecologically relevant wastewater quality assessment system that would be useful for developing strategies to protect aquatic ecosystems.


Assuntos
Ulva , Poluentes Químicos da Água , Animais , Águas Residuárias/toxicidade , Poluentes Químicos da Água/análise , Cádmio/farmacologia , Ecossistema , Aliivibrio fischeri , Bioensaio , Medição de Risco , Daphnia
3.
Biol Rev Camb Philos Soc ; 95(3): 822-846, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32045110

RESUMO

Epigenetic mechanisms have gained relevance in human health and environmental studies, due to their pivotal role in disease, gene × environment interactions and adaptation to environmental change and/or contamination. Epigenetic mechanisms are highly responsive to external stimuli and a wide range of chemicals has been shown to determine specific epigenetic patterns in several organisms. Furthermore, the mitotic/meiotic inheritance of such epigenetic marks as well as the resulting changes in gene expression and cell/organismal phenotypes has now been demonstrated. Therefore, epigenetic signatures are interesting candidates for linking environmental exposures to disease as well as informing on past exposures to stressors. Accordingly, epigenetic biomarkers could be useful tools in both prospective and retrospective risk assessment but epigenetic endpoints are currently not yet incorporated into risk assessments. Achieving a better understanding on this apparent impasse, as well as identifying routes to promote the application of epigenetic biomarkers within environmental risk assessment frameworks are the objectives of this review. We first compile evidence from human health studies supporting the use of epigenetic exposure-associated changes as reliable biomarkers of exposure. Then, specifically focusing on environmental science, we examine the potential and challenges of developing epigenetic biomarkers for environmental fields, and discuss useful organisms and appropriate sequencing techniques to foster their development in this context. Finally, we discuss the practical incorporation of epigenetic biomarkers in the environmental risk assessment of chemicals, highlighting critical data gaps and making key recommendations for future research within a regulatory context.


Assuntos
Exposição Ambiental/efeitos adversos , Epigênese Genética/fisiologia , Animais , Artemia/efeitos dos fármacos , Biomarcadores , Metilação de DNA/fisiologia , Daphnia/efeitos dos fármacos , Relação Dose-Resposta a Droga , Biomarcadores Ambientais/fisiologia , Exposição Ambiental/análise , Humanos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA