Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Environ Sci Pollut Res Int ; 29(50): 75609-75625, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35655023

RESUMO

The concentrations and distribution of ß-blockers, lipid regulators, and psychiatric and cancer drugs in the influent and effluent of the municipal wastewater treatment plant (WWTP) and the effluent of 16 hospitals that discharge into the wastewater treatment plant mentioned in this study at two sampling dates in summer and winter were examined. The pharmaceutical contribution of hospitals to municipal wastewater was determined. The removal of target pharmaceuticals was evaluated in a WWTP consisting of conventional biological treatment using activated sludge. Additionally, the potential environmental risk for the aquatic receiving environments (salt lake) was assessed. Beta-blockers and psychiatric drugs were detected in high concentrations in the wastewater samples. Atenolol (919 ng/L) from ß-blockers and carbamazepine (7008 ng/L) from psychiatric pharmaceuticals were detected at the highest concentrations in hospital wastewater. The total pharmaceutical concentration determined at the WWTP influent and effluent was between 335 and 737 ng/L in summer and between 174 and 226 ng/L in winter. The concentrations detected in hospital effluents are higher than the concentrations detected in WWTP. The total pharmaceutical contributions from hospitals to the WWTP in summer and winter were determined to be 2% and 4%, respectively. Total pharmaceutical removal in the WWTP ranged from 23 to 54%. According to the risk ratios, atenolol could pose a high risk (risk quotient > 10) for fish in summer and winter. There are different reasons for the increase in pharmaceutical consumption in recent years. One of these reasons is the COVID-19 pandemic, which has been going on for 2 years. In particular, hospitals were operated at full capacity during the pandemic, and the occurrence and concentration of pharmaceuticals used for the therapy of COVID-19 patients has increased in hospital effluent. Pandemic conditions have increased the tendency of people to use psychiatric drugs. It is thought that beta-blocker consumption has increased due to cardiovascular diseases caused by COVID-19. Therefore, the environmental risk of pharmaceuticals for aquatic organisms in hospital effluent should be monitored and evaluated.


Assuntos
COVID-19 , Poluentes Químicos da Água , Atenolol , Carbamazepina , Monitoramento Ambiental , Hospitais , Humanos , Lipídeos , Pandemias , Preparações Farmacêuticas , Medição de Risco , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 817: 152864, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34998750

RESUMO

The occurrences, temporal variations and ecotoxicological risks of 38 selected pharmaceuticals from 7 therapeutic classes (i.e. antibiotics, analgesics, anti-inflammatories, beta-blockers, lipid regulators, anticancer agents, and psychiatric drugs) have been observed in the anaerobically treated sludge of the urban wastewater treatment plant (WWTP) in Konya, Turkey. Sampling was carried out to assess the seasonal variations in one year. The total daily wastewater flow rate of the WWTP was approximately 200,000 m3/day, and 140 tons/day of treated sludge were produced. The total concentrations of all pharmaceutical compounds ranged from 280 to 4898 µg/kg of dry matter (dm). The dominant therapeutic class was analgesics and anti-inflammatories (49%), which was followed by antibiotics (31%). Clarithromycin and azithromycin were the most abundant compounds, with concentrations of 1496 µg/kg dm. The total daily pharmaceutical load in the treated sludge was as high as 1.002 kg/day in the winter season, while the annual pharmaceutical mass load that was discharged into the environment was estimated to be approximately 71.6 kg. The use of treated sludge as fertilizer in agricultural lands causes continuous contamination of the terrestrial environment by pharmaceuticals. Five antibiotics (i.e., azithromycin, clarithromycin, erythromycin, sulfamethoxazole, and doxycycline), one analgesic (acetylsalicylic acid) and one beta-blocker (atenolol) in the digested sludge pose acute and short chronic high risks to environment. The highest short chronic risk in the digested sludge-amended soils was determined for azithromycin (RQ: 54.9). To reduce the potential environmental impact of pharmaceuticals, digested sludge should be monitored in terms of the pharmaceutical contents before being applied to soil.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Medição de Risco , Estações do Ano , Esgotos/química , Solo/química , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise
3.
Environ Sci Pollut Res Int ; 26(13): 12788-12797, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30887452

RESUMO

In this study, health risk of human exposure to organohalogenated pollutants (OHPs) through milk consumption was determined. Conventionally produced, unprocessed cow's milk samples taken from Konya District, in Turkey, and 15 different brand ultra-high-temperature (UHT) processed cow's milk samples taken from supermarkets of Turkey were analyzed for organochlorine pesticides (OCPs, α-, ß-, γ-, and δ-HCHs, p,p'-DDE, p,p'-DDD, and p,p'-DDT, heptachlor, heptachlor epoxide, endosulfan I, endosulfan II, endosulfan sulfate, endrin, endrin aldehyde, endrin ketone, aldrin + dieldrin, methoxychlor), polychlorinated biphenyls (PCBs, PCB 28, 52, 101, 153, 138, and 180), and polybrominated diphenyl ethers (PBDEs, PBDE 47, 99, 100, 153, and 154 congeners). Estimated daily intake (EDI) values calculated for both adults and children consuming raw or UHT milk were determined to exceed maximum residue limits (MRLs) set for γ-HCH, ∑Heptachlor, and endrin. EDI values also exceeded admissible daily intake (ADI) values given for ∑HCH, ∑Heptachlor, ∑Endrin aldrin + dieldrin, and ∑PCBs. p,p'-DDT/p,p'-DDE ratio was 1 or higher for 66% of the milk samples, which is an indication of sustaining illegal use of DDT. A health risk is determined for dietary intake of OHPs via consumption of milk.


Assuntos
Poluentes Ambientais/análise , Contaminação de Alimentos/análise , Hidrocarbonetos Clorados/análise , Leite/química , Adulto , Animais , Bovinos , Criança , Exposição Dietética/efeitos adversos , Poluentes Ambientais/toxicidade , Feminino , Humanos , Hidrocarbonetos Clorados/toxicidade , Pasteurização/métodos , Praguicidas/análise , Praguicidas/toxicidade , Bifenil Polibromatos/análise , Bifenil Polibromatos/toxicidade , Medição de Risco , Temperatura , Turquia
4.
Environ Sci Pollut Res Int ; 26(1): 544-558, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30406596

RESUMO

The study presented the occurrence of antibiotics in 16 different hospital effluents, the removal of antibiotics in urban wastewater treatment plant (WWTP), and the potential ecotoxicological risks of the effluent discharge on the aquatic ecosystem. The total concentration of antibiotics in hospital effluents was ranged from 21.2 ± 0.13 to 4886 ± 3.80 ng/L in summer and from 497 ± 3.66 to 322,735 ± 4.58 ng/L in winter. Azithromycin, clarithromycin, and ciprofloxacin were detected the highest concentrations among the investigated antibiotics. The total antibiotic load to the influent of the WWTP from hospitals was 3.46 g/day in summer and 303.2 g/day in winter. The total antibiotic contribution of hospitals to the influent of the WWTP was determined as 13% in summer and 28% in winter. The remaining 87% in summer and 72% in winter stems from the households. The total antibiotic removal by conventional physical and biological treatment processes was determined as 79% in summer, whereas it decreased to 36% in winter. When the environmental risk assessment was performed, azithromycin and clarithromycin in the effluent from the treatment plant in winter posed a high risk (RQ > 10) for the aquatic organisms (algae and fish) in the receiving environment. According to these results, the removal efficiency of antibiotics at the WWTP is inadequate and plant should be improved to remove antibiotics by advanced treatment processes.


Assuntos
Antibacterianos/análise , Monitoramento Ambiental , Eliminação de Resíduos Líquidos/estatística & dados numéricos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Azitromicina , Claritromicina , Hospitais , Medição de Risco , Estações do Ano , Águas Residuárias/análise , Águas Residuárias/estatística & dados numéricos
5.
Environ Technol ; 36(22): 2825-34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25951939

RESUMO

The objective of this study was to identify and to apply appropriate biotests having the advantages of being highly sensitive, easy to run, relatively inexpensive and able to substitute fish toxicity tests due to ethical reasons of animal welfare. To perform an ecotoxicological assessment of industrial wastewaters, different microbiotests were conducted to substitute the fish toxicity test with Lebistes reticulatus through Vibrio fischeri, Thamnocephalus platyurus, Daphnia magna, Lemna minor and Lepidium sativum representing different trophic levels in the aquatic and terrestrial ecosystems. Also, Algaltox F(TM) with Pseudokirchneriella subcapitata and Protox F(TM) with Tetrahymena thermophila tests were carried out. However, they could not be applied successfully for the wastewater samples. Wastewater samples from seven different industrial zones comprising different industries were subjected to characterization through measuring their physical-chemical parameters and their toxicity versus the above-mentioned organisms. T. platyurus, D. magna and L. reticulatus were the most sensitive test organisms investigated for the wastewaters. Considering toxic unit values, generally wastewater samples were toxic according to Thamnotox F(TM), Daphtox F(TM) and fish toxicity tests. As an important outcome, it was concluded that Daphtox F(TM) and Thamnotox F(TM) could be a good alternative for the fish toxicity test, which is so far the sole toxicity test accepted by the Turkish Water Pollution Control Regulation.


Assuntos
Bioensaio/métodos , Ecotoxicologia/métodos , Testes de Toxicidade/métodos , Eliminação de Resíduos Líquidos , Aliivibrio fischeri/efeitos dos fármacos , Animais , Daphnia/efeitos dos fármacos , Monitoramento Ambiental , Peixes , Resíduos Industriais/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA