Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain Behav ; 14(5): e3507, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38688895

RESUMO

INTRODUCTION: Alzheimer's disease (AD) is a neurodegenerative condition characterized by gradual loss of cognitive abilities (dementia) and is a major public health problem. Here, we aimed at investigating the effects of Rosa damascena essential oil (RDEO) on learning and memory functions in a rat model of amnesia induced by scopolamine, as well as on changes in acetylcholinesterase (AChE) activity, M1 muscarinic acetylcholine receptor (mAChR) expression, and brain-derived neurotrophic factor (BDNF) levels in the extracted brain tissues. METHODS: The control, amnesia (scopolamine, 1 mg/kg/i.p.) and treatment (RDEO, 100 µL/kg/p.o. or galantamine, 1.5 mg/kg/i.p.) groups were subjected to Morris water maze and new object recognition tests. AChE activity was assayed by ELISA, and M1 mAChR and BDNF concentration changes were determined by western blotting. Also, using computational tools, human M1 mAChR was modeled in an active conformation, and the major components of RDEO were docked onto this receptor. RESULTS: According to our behavioral tests, RDEO was able to mitigate the learning and memory impairments caused by scopolamine in vivo. Our in vitro assays showed that the observed positive effects correlated well with a decrease in AChE activity and an increase in M1 mAChR and BDNF levels in amnestic rat brains. We also demonstrated in an in silico setting that the major components of RDEO, specifically -citronellol, geraniol, and nerol, could be accommodated favorably within the allosteric binding pocket of active-state human M1 mAChR and anchored here chiefly by hydrogen-bonding and alkyl-π interactions. CONCLUSION: Our findings offer a solid experimental foundation for future RDEO-based medicinal product development for patients suffering from AD.


Assuntos
Acetilcolinesterase , Amnésia , Fator Neurotrófico Derivado do Encéfalo , Óleos Voláteis , Rosa , Escopolamina , Animais , Ratos , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Amnésia/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/administração & dosagem , Masculino , Rosa/química , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Acetilcolinesterase/metabolismo , Receptor Muscarínico M1/metabolismo , Ratos Wistar , Nootrópicos/farmacologia , Modelos Animais de Doenças , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cognição/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos
2.
Behav Brain Res ; 293: 227-33, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26225843

RESUMO

D-cycloserine (DCS), an FDA approved anti-tuberculosis drug has extensively been studied for its cognitive enhancer effects in psychiatric disorders. DCS may enhance the effects of fear extinction trainings in animals during exposure therapy and hence we investigated the effects of DCS on distinct behavioral parameters in a predator odor stress model and tested the optimal duration for repeated daily administrations of the agent. Cat fur odor blocks were used to produce stress and avoidance and risk assessment behavioral parameters were used where DCS or saline were used as treatments in adjunct to extinction trainings. We observed that DCS facilitated extinction training by providing further extinction of avoidance responses, risk assessment behaviors and increased the contact with the cue in a setting where DCS was administered before extinction trainings for 3 days without producing a significant tolerance. In amygdala and hippocampus, GluN1 protein expressions decreased 72h after the fear conditioning in the traumatic stress group suggesting a possible down-regulation of NMDARs. We observed that extinction learning increased GluN1 proteins both in the amygdaloid complex and the dorsal hippocampus of the rats receiving extinction training or extinction training with DCS. Our findings also indicate that DCS with extinction training increased GluN1 protein levels in the frontal cortex. We may suggest that action of DCS relies on enhancement of the consolidation of fear extinction in the frontal cortex.


Assuntos
Antimetabólitos/uso terapêutico , Aprendizagem da Esquiva/efeitos dos fármacos , Ciclosserina/uso terapêutico , Lobo Frontal/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Transtornos de Estresse Traumático/tratamento farmacológico , Análise de Variância , Animais , Gatos , Modelos Animais de Doenças , Extinção Psicológica/efeitos dos fármacos , Feminino , Reação de Congelamento Cataléptica/efeitos dos fármacos , Lobo Frontal/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Odorantes , Ratos , Ratos Wistar , Reflexo de Estiramento/efeitos dos fármacos , Medição de Risco , Transtornos de Estresse Traumático/patologia , Transtornos de Estresse Traumático/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA