Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958073

RESUMO

The assessment of lameness in horses can be aided by objective gait analysis tools. Despite their key role of evaluating a horse at trot on a circle, asymmetry thresholds have not been determined for differentiating between sound and lame gait during this exercise. These thresholds are essential to distinguish physiological asymmetry linked to the circle from pathological asymmetry linked to lameness. This study aims to determine the Asymmetry Indices (AIs) with the highest power to discriminate between a group of sound horses and a group of horses with consistent unilateral lameness across both circle directions, as categorized by visual lameness assessment conducted by specialist veterinarians. Then, thresholds were defined for the best performing AIs, based on the optimal sensitivity and specificity. AIs were calculated as the relative comparison between left and right minima, maxima, time between maxima and upward amplitudes of the vertical displacement of the head and the withers. Except the AI of maxima difference, the head AI showed the highest sensitivity (≥69%) and the highest specificity (≥81%) for inside forelimb lameness detection and the withers AI showed the highest sensitivity (≥72%) and the highest specificity (≥77%) for outside forelimb lameness detection on circles.

2.
Sensors (Basel) ; 23(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37960531

RESUMO

Hydrotherapy has been utilized in horse rehabilitation programs for over four decades. However, a comprehensive description of the swimming cycle of horses is still lacking. One of the challenges in studying this motion is 3D underwater motion capture, which holds potential not only for understanding equine locomotion but also for enhancing human swimming performance. In this study, a marker-based system that combines underwater cameras and markers drawn on horses is developed. This system enables the reconstruction of the 3D motion of the front and hind limbs of six horses throughout an entire swimming cycle, with a total of twelve recordings. The procedures for pre- and post-processing the videos are described in detail, along with an assessment of the estimated error. This study estimates the reconstruction error on a checkerboard and computes an estimated error of less than 10 mm for segments of tens of centimeters and less than 1 degree for angles of tens of degrees. This study computes the 3D joint angles of the front limbs (shoulder, elbow, carpus, and front fetlock) and hind limbs (hip, stifle, tarsus, and hind fetlock) during a complete swimming cycle for the six horses. The ranges of motion observed are as follows: shoulder: 17 ± 3°; elbow: 76 ± 11°; carpus: 99 ± 10°; front fetlock: 68 ± 12°; hip: 39 ± 3°; stifle: 68 ± 7°; tarsus: 99 ± 6°; hind fetlock: 94 ± 8°. By comparing the joint angles during a swimming cycle to those observed during classical gaits, this study reveals a greater range of motion (ROM) for most joints during swimming, except for the front and hind fetlocks. This larger ROM is usually achieved through a larger maximal flexion angle (smaller minimal angle of the joints). Finally, the versatility of the system allows us to imagine applications outside the scope of horses, including other large animals and even humans.


Assuntos
Captura de Movimento , Natação , Cavalos , Animais , Humanos , Fenômenos Biomecânicos , Locomoção , Articulação do Tornozelo
3.
Animals (Basel) ; 12(24)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36552418

RESUMO

Defining whether a gait asymmetry should be considered as lameness is challenging. Gait analysis systems now provide relatively accurate objective data, but their interpretation remains complex. Thresholds for discriminating between horses that are visually assessed as being lame or sound, as well as thresholds for locating the lame limb with precise sensitivity and specificity are essential for accurate interpretation of asymmetry measures. The goal of this study was to establish the thresholds of asymmetry indices having the best sensitivity and specificity to represent the visual single-limb lameness assessment made by expert veterinarians as part of their routine practice. Horses included in this study were evaluated for locomotor disorders at a clinic and equipped with the EQUISYM® system using inertial measurement unit (IMU) sensors. Visual evaluation by expert clinicians allocated horses into five groups: 49 sound, 62 left forelimb lame, 67 right forelimb lame, 23 left hindlimb lame, and 23 right hindlimb lame horses. 1/10 grade lame horses were excluded. Sensors placed on the head (_H), the withers (_W), and the pelvis (_P) provided vertical displacement. Relative difference of minimal (AI-min) and maximal (AI-max) altitudes, and of upward (AI-up) and downward (AI-down) amplitudes between right and left stance phases were calculated. Receiver operating characteristic (ROC) curves discriminating the sound horses from each lame limb group revealed the threshold of asymmetry indice associated with the best sensitivity and specificity. AI-up_W had the best ability to discriminate forelimb lame horses from sound horses with thresholds (left: -7%; right: +10%) whose sensitivity was greater than 84% and specificity greater than 88%. AI-up_P and AI-max_P discriminated hindlimb lame horses from sound horses with thresholds (left: -7%; right: +18% and left: -10%; right: +6%) whose sensitivity was greater than 78%, and specificity greater than 82%. Identified thresholds will enable the interpretation of quantitative data from lameness quantification systems. This study is mainly limited by the number of included horses and deserves further investigation with additional data, and similar studies on circles are warranted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA