Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nutrients ; 15(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36615854

RESUMO

The objective of this study is to evaluate the effects of a strictly essential amino acid (lysine or threonine; EAA) deficiency on energy metabolism in growing rats. Rats were fed for three weeks severely (15% and 25% of recommendation), moderately (40% and 60%), and adequate (75% and 100%) lysine or threonine-deficient diets. Food intake and body weight were measured daily and indirect calorimetry was performed the week three. At the end of the experimentation, body composition, gene expression, and biochemical analysis were performed. Lysine and threonine deficiency induced a lower body weight gain and an increase in relative food intake. Lysine or threonine deficiency induced liver FGF21 synthesis and plasma release. However, no changes in energy expenditure were observed for lysine deficiency, unlike threonine deficiency, which leads to a decrease in total and resting energy expenditure. Interestingly, threonine severe deficiency, but not lysine deficiency, increase orexigenic and decreases anorexigenic hypothalamic neuropeptides expression, which could explain the higher food intake. Our results show that the deficiency in one EAA, induces a decrease in body weight gain, despite an increased relative food intake, without any increase in energy expenditure despite an induction of FGF21.


Assuntos
Lisina , Treonina , Ratos , Animais , Peso Corporal , Aumento de Peso , Metabolismo Energético , Ingestão de Alimentos/fisiologia
2.
Br J Nutr ; 125(4): 389-397, 2021 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32713356

RESUMO

The objective of this study was to assess the nutritional quality of pea protein isolate in rats and to evaluate the impact of methionine (Met) supplementation. Several protein diets were studied: pea protein, casein, gluten, pea protein-gluten combination and pea protein supplemented with Met. Study 1: Young male Wistar rats (n 8/group) were fed the test diets ad libitum for 28 d. The protein efficiency ratio (PER) was measured. Study 2: Adult male Wistar rats (n 9/group) were fed the test diets for 10 d. A protein-free diet group was used to determine endogenous losses of N. The rats were placed in metabolism cages for 3 d to assess N balance, true faecal N digestibility and to calculate the Protein Digestible-Corrected Amino Acid Score (PDCAAS). They were then given a calibrated meal and euthanised 6 h later for collection of digestive contents. The true caecal amino acid (AA) digestibility was determined, and the Digestible Indispensable Amino Acid Score (DIAAS) was calculated. Met supplementation increased the PER of pea protein (2·52 v. 1·14, P < 0·001) up to the PER of casein (2·55). Mean true caecal AA digestibility was 94 % for pea protein. The DIAAS was 0·88 for pea protein and 1·10 with Met supplementation, 1·29 for casein and 0·25 for gluten. Pea protein was highly digestible in rats under our experimental conditions, and Met supplementation enabled generation of a mixture that had a protein quality that was not different from that of casein.


Assuntos
Caseínas/metabolismo , Glutens/metabolismo , Metionina/metabolismo , Pisum sativum/química , Proteínas de Plantas/metabolismo , Ração Animal/análise , Animais , Caseínas/normas , Dieta , Glutens/normas , Masculino , Metionina/normas , Nitrogênio/metabolismo , Valor Nutritivo , Proteínas de Plantas/química , Proteínas de Plantas/normas , Ratos
3.
Am J Physiol Regul Integr Comp Physiol ; 316(5): R486-R501, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30735436

RESUMO

Low-protein diets most often induce increased energy intake in an attempt to increase protein intake to meet protein needs with a risk of accumulation as fat of the excess energy intake. In female adult BALB/c mice, a decrease in dietary casein from 20% to 6% and 3% increased energy intake and slightly increased adiposity, and this response was exacerbated with soy proteins with low methionine content. The effect on fat mass was however limited because total energy expenditure increased to the same extent as energy intake. Lean body mass was preserved in all 6% fed mice and reduced only in 3% casein-fed animals. Insulin response to an oral glucose tolerance test was reduced in soy-fed mice and in low-protein-fed mice. Low-protein diets did not affect uncoupling protein 1 and increased fibroblast growth factor 21 (FGF21) in brown adipose tissue and increased FGF21, fatty acid synthase, and cluster of differentiation 36 in the liver. In the hypothalamus, neuropeptide Y was increased and proopiomelanocortin was decreased only in 3% casein-fed mice. In plasma, when protein was decreased, insulin-like growth factor-1 decreased and FGF21 increased and plasma FGF21 was best described by using a combination of dietary protein level, protein-to-carbohydrate ratio, and protein-to-methionine ratio in the diet. In conclusion, reducing dietary protein and protein quality increases energy intake but also energy expenditure resulting in an only slight increase in adiposity. In this process, FGF21 is probably an important signal that responds to a complex combination of protein restriction, protein quality, and carbohydrate content of the diet.


Assuntos
Adiposidade , Dieta com Restrição de Proteínas , Carboidratos da Dieta/administração & dosagem , Ingestão de Energia , Metabolismo Energético , Fatores de Crescimento de Fibroblastos/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Metionina/deficiência , Valor Nutritivo , Amido/administração & dosagem , Tecido Adiposo/metabolismo , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Biomarcadores , Carboidratos da Dieta/metabolismo , Regulação para Baixo , Feminino , Hipotálamo/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos BALB C , Amido/metabolismo , Regulação para Cima
4.
Am J Physiol Regul Integr Comp Physiol ; 307(3): R299-309, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24898839

RESUMO

Obesity-prone (OP) rodents are used as models of human obesity predisposition. The goal of the present study was to identify preexisting defects in energy expenditure components in OP rats. Two studies were performed. In the first one, male Wistar rats (n = 48) were fed a high-carbohydrate diet (HCD) for 3 wk and then a high-fat diet (HFD) for the next 3 wk. This study showed that adiposity gain under HCD was 2.9-fold larger in carbohydrate-sensitive (CS) than in carbohydrate-resistant (CR) rats, confirming the concept of "carbohydrate-sensitive" rats. Energy expenditure (EE), respiratory quotient (RQ), caloric intake (CI), and locomotor activity measured during HFD identified no differences in EE and RQ between fat-resistant (FR) and fat-sensitive (FS) rats, and indicated that obesity developed in FS rats only as the result of a larger CI not fully compensated by a parallel increase in EE. A specific pattern of spontaneous activity, characterized by reduced activity burst intensity, was identified in FS rats but not in CS ones. This mirrors a previous observation that under HCD, CS but not FS rats, exhibited bursts of activity of reduced intensity. In a second study, rats were fed a HFD for 3 wk, and the components of energy expenditure were examined by indirect calorimetry in 10 FR and 10 FS rats. This study confirmed that a low basal EE, reduced thermic effect of feeding, defective postprandial energy partitioning, or a defective substrate utilization by the working muscle are not involved in the FS phenotype.


Assuntos
Carboidratos da Dieta/farmacologia , Gorduras na Dieta/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Obesidade/genética , Obesidade/fisiopatologia , Animais , Composição Corporal/efeitos dos fármacos , Composição Corporal/fisiologia , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Calorimetria Indireta , Modelos Animais de Doenças , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Predisposição Genética para Doença/genética , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Ratos , Ratos Wistar
5.
PLoS One ; 6(2): e14664, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21326875

RESUMO

High protein (HP) diet could serve as a good strategy against obesity, provoking the changes in energy metabolic pathways. However, those modifications differ during a dietary adaptation. To better understand the mechanisms involved in effect of high protein diet (HP) on limiting adiposity in rats we studied in parallel the gene expression of enzymes involved in protein and energy metabolism and the profiles of nutrients oxidation. Eighty male Wistar rats were fed a normal protein diet (NP, 14% of protein) for one week, then either maintained on NP diet or assigned to a HP diet (50% of protein) for 1, 3, 6 and 14 days. mRNA levels of genes involved in carbohydrate and lipid metabolism were measured in liver, adipose tissues, kidney and muscles by real time PCR. Energy expenditure (EE) and substrate oxidation were measured by indirect calorimetry. Liver glycogen and plasma glucose and hormones were assayed. In liver, HP feeding 1) decreased mRNA encoding glycolysis enzymes (GK, L-PK) and lipogenesis enzymes(ACC, FAS), 2) increased mRNA encoding gluconeogenesis enzymes (PEPCK), 3) first lowered, then restored mRNA encoding glycogen synthesis enzyme (GS), 4) did not change mRNA encoding ß-oxidation enzymes (CPT1, ACOX1, ßHAD). Few changes were seen in other organs. In parallel, indirect calorimetry confirmed that following HP feeding, glucose oxidation was reduced and fat oxidation was stable, except during the 1(st) day of adaptation where lipid oxidation was increased. Finally, this study showed that plasma insulin was lowered and hepatic glucose uptake was decreased. Taken together, these results demonstrate that following HP feeding, CHO utilization was increased above the increase in carbohydrate intake while lipogenesis was decreased thus giving a potential explanation for the fat lowering effect of HP diets.


Assuntos
Metabolismo dos Carboidratos/efeitos dos fármacos , Carboidratos da Dieta/farmacologia , Proteínas Alimentares/farmacologia , Glucose/metabolismo , Ração Animal , Animais , Metabolismo dos Carboidratos/fisiologia , Dieta com Restrição de Carboidratos/efeitos adversos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Modelos Biológicos , Oxirredução/efeitos dos fármacos , Ratos , Ratos Wistar , Regulação para Cima
6.
J Nutr ; 140(5): 939-45, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20335631

RESUMO

It has been suggested that high-protein (HP) diets may favor weight management by lowering energy intake and reducing body fat. Whether these effects result from changes in energy metabolism remains unclear. We measured the adaptation of energy metabolism components during 2 wk of HP feeding. Fifty male Wistar rats were switched from a control diet to an HP diet (14 and 55% of protein, respectively) for 1, 3, 6, or 14 d. Energy expenditure (EE) and substrate oxidation were measured by indirect calorimetry in feed-deprived rats and after consumption of a test meal. EE components, including the thermic effect of feeding and activity, were not modified during adaptation to an HP diet. Nutrient oxidation in feed-deprived rats was not affected by HP feeding, except for an early increase in protein oxidation. After 1 d, the postprandial inhibition of lipid oxidation (Lox) was blunted, carbohydrate (CHO) oxidation decreased by one-half, and urea clearance decreased by 66%. Thereafter, CHO oxidation gradually rose, resulting in a null CHO balance. Lox and urea clearance recovered after 3 d of adaptation to an HP diet, while protein oxidation reached a plateau. The postprandial oxidation of CHO counterbalanced the amount of ingested CHO as soon as 3 d, leading to a null postprandial CHO balance. We conclude that the inhibition of de novo lipogenesis from dietary CHO, but not EE and Lox, may participate in limiting the adiposity induced by HP feeding. The transient changes occurring during the period of adaptation to the diet highlight that the duration of the diet is critical in HP diet studies.


Assuntos
Adiposidade/fisiologia , Carboidratos da Dieta/metabolismo , Gorduras na Dieta/metabolismo , Proteínas Alimentares/metabolismo , Metabolismo Energético , Lipogênese/fisiologia , Obesidade/metabolismo , Animais , Regulação da Temperatura Corporal , Calorimetria Indireta , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Masculino , Oxirredução , Período Pós-Prandial , Ratos , Ratos Wistar , Ureia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA