Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lab Chip ; 22(12): 2376-2391, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35635092

RESUMO

Flexible and wearable electronic sensors hold great promise for improving the quality of life, especially in the field of healthcare monitoring, owing to their low cost, flexibility, high electromechanical coupling performance, high sensitivity, and biocompatibility. To achieve high piezoelectric performance similar to that of rigid materials while satisfying the flexible requirements for wearable sensors, we propose novel hybrid films based on lead zirconate titanate powder and microfibrillated cellulose (PZT/MFC) for plantar pressure measurements. The flexible films made using the polarization process are tested. It was found that the maximum piezoelectric coefficient was 31 pC N-1 and the maximum tensile force of the flexible films was 26 N. A wide range of bending angles between 15° and 180° proves the flexibility capability of the films. In addition, the charge density shows a proportional relation with the applied mechanical force, and it could sense stress of 1 kPa. Finally, plantar pressure sensors are arranged and packaged with a film array followed by connection with the detection module. Then, the pressure curves of each point on the plantar are obtained. Through analysis of the curve, several parameters of human body motions that are important in the rehabilitation of diabetic patients and the detection of sports injury can be performed, including stride frequency, length and speed. Overall, the proposed PZT/MFC wearable plantar pressure sensor has broad application prospects in the field of sports injury detection and medical rehabilitation training.


Assuntos
Traumatismos em Atletas , Dispositivos Eletrônicos Vestíveis , Celulose , Corpo Humano , Humanos , Chumbo , Pressão , Qualidade de Vida , Titânio , Zircônio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA