Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMJ Open ; 12(11): e063271, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36356998

RESUMO

INTRODUCTION: SARS-CoV-2 infection rarely causes hospitalisation in children and young people (CYP), but mild or asymptomatic infections are common. Persistent symptoms following infection have been reported in CYP but subsequent healthcare use is unclear. We aim to describe healthcare use in CYP following community-acquired SARS-CoV-2 infection and identify those at risk of ongoing healthcare needs. METHODS AND ANALYSIS: We will use anonymised individual-level, population-scale national data linking demographics, comorbidities, primary and secondary care use and mortality between 1 January 2019 and 1 May 2022. SARS-CoV-2 test data will be linked from 1 January 2020 to 1 May 2022. Analyses will use Trusted Research Environments: OpenSAFELY in England, Secure Anonymised Information Linkage (SAIL) Databank in Wales and Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 in Scotland (EAVE-II). CYP aged ≥4 and <18 years who underwent SARS-CoV-2 reverse transcription PCR (RT-PCR) testing between 1 January 2020 and 1 May 2021 and those untested CYP will be examined.The primary outcome measure is cumulative healthcare cost over 12 months following SARS-CoV-2 testing, stratified into primary or secondary care, and physical or mental healthcare. We will estimate the burden of healthcare use attributable to SARS-CoV-2 infections in the 12 months after testing using a matched cohort study of RT-PCR positive, negative or untested CYP matched on testing date, with adjustment for confounders. We will identify factors associated with higher healthcare needs in the 12 months following SARS-CoV-2 infection using an unmatched cohort of RT-PCR positive CYP. Multivariable logistic regression and machine learning approaches will identify risk factors for high healthcare use and characterise patterns of healthcare use post infection. ETHICS AND DISSEMINATION: This study was approved by the South-Central Oxford C Health Research Authority Ethics Committee (13/SC/0149). Findings will be preprinted and published in peer-reviewed journals. Analysis code and code lists will be available through public GitHub repositories and OpenCodelists with meta-data via HDR-UK Innovation Gateway.


Assuntos
COVID-19 , Criança , Humanos , Adolescente , COVID-19/epidemiologia , SARS-CoV-2 , Teste para COVID-19 , Estudos de Coortes , País de Gales/epidemiologia , Atenção à Saúde , Estudos Observacionais como Assunto
2.
BMC Genomics ; 14: 610, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-24020411

RESUMO

BACKGROUND: Loss of CpG dinucleotides in genomic DNA through methylation-induced mutation is characteristic of vertebrates and plants. However, these and other eukaryotic phyla show a range of other dinucleotide frequency biases with currently uncharacterized underlying mutational or selection mechanisms. We developed a parameterized Markov process to identify what neighbour context-dependent mutations best accounted for patterns of dinucleotide frequency biases in genomic and cytoplasmically expressed mRNA sequences of different vertebrates, other eukaryotic groups and RNA viruses that infect them. RESULTS: Consistently, 11- to 14-fold greater frequencies of the methylation-associated mutation of C to T upstream of G (depicted as C→T,G) than other transitions best modelled dinucleotide frequencies in mammalian genomic DNA. However, further mutations such as G→T,T (5-fold greater than the default transversion rate) were required to account for the full spectrum of dinucleotide frequencies in mammalian sequence datasets. Consistent with modeling predictions for these two mutations, instability of both CpG and CpT dinucleotides was identified through SNP frequency analysis of human DNA sequences. Different sets of context-dependent mutations were modelled in other eukaryotes with non-methylated genomic DNA. In contrast to genomic DNA, best-fit models of dinucleotide frequencies in transcribed RNA sequences expressed in the cytoplasm from all organisms were dominated by mutations that eliminated UpA dinucleotides, observations consistent with cytoplasmically driven selection for mRNA stability. Surprisingly, mRNA sequences from organisms with methylated genomes showed evidence for additional selection against CpG through further context-dependent mutations (eg. C→A,G). Similar mutation or selection processes were identified among single-stranded mammalian RNA viruses; these potentially account for their previously described but unexplained under-representations of CpG and UpA dinucleotides. CONCLUSIONS: Methods we have developed identify mutational processes and selection pressures in organisms that provide new insights into nucleotide compositional constraints and a wealth of biochemical and evolutionarily testable predictions for the future.


Assuntos
Ilhas de CpG , Vírus de RNA/genética , RNA Mensageiro/genética , Seleção Genética , Animais , Composição de Bases , Citoplasma/genética , Citoplasma/metabolismo , Metilação de DNA , Humanos , Cadeias de Markov , Modelos Genéticos , Mutação , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA