Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Phys Med ; 89: 200-209, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34399207

RESUMO

PURPOSE: Investigation of surface dose rate variation with respect to the source configuration of 106Ru/106Rh eye plaque. To explore an alternate way to determine activity of brachytherapy plaques. METHODS: The surface dose rates of 106Ru/106Rh plaque developed indigenously were measured by extrapolation chamber. To rule out possibility of any error in the activity distribution and quantity, same source was used in two different configurations namely planar and curved. EBT3 Gafchromic film was used for determination of uniformity in activity. Monte Carlo-based Codes EGSnrc and FLUKA were used to calculate dose rate in tissue, percentage depth dose and for determination of activity. Parameters and correction factors were estimated using simulations. RESULTS: The measured reference absorbed dose rates for planar and curved 106Ru/106Rh eye plaques are found to be 589 ± 29 mGy/h and 560 ± 28 mGy/h, respectively. The difference in the reference absorbed dose rate of curved eye plaque is about ~5% as compared to planar configuration. The FLUKA-calculated dose values are almost independent of cavity length of the extrapolation chamber for both eye plaques. The FLUKA-based dose rates per µCi 106Ru/106Rh are about 17.28 ± 0.08 mGy/h and 16.48 ± 0.06 mGy/h, respectively for planar and curved eye plaques which match well with the measurements. The calculated activities for planar and curved eye plaques are 34.08 µCi and 33.98 µCi, respectively. CONCLUSIONS: Surface dose rates for a prototype 106Ru/106Rh eye plaque with different configurations were estimated using simulations and measured experimentally. An alternate way to determine activity of beta-gamma brachytherapy plaque has been proposed.


Assuntos
Braquiterapia , Neoplasias Oculares , Neoplasias Oculares/radioterapia , Humanos , Método de Monte Carlo , Radiometria , Dosagem Radioterapêutica
2.
J Radiol Prot ; 39(1): 54-70, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30523912

RESUMO

This paper describes the evaluation of dosimetry characteristics of an in-house developed 177Lu skin patch source for treatment of non-melanoma skin cancer. A 177Lu skin patch source based on Nafion-115 membrane backbone containing 3.46 ± 0.01 mCi of activity was used. Activity measurement of the patch source was based on gamma ray spectrometry using a HPGe detector. The efficiencies of the HPGe detector were fitted using an orthogonal polynomial function. The absorbed dose rate to water at 5 µm depth in water was determined using an extrapolation chamber, EBT3 Gafchromic film and compared with Monte Carlo methods. The correction factors such as Bragg-Gray stopping power ratio of water-to-air and chamber wall material being different from water, needed to be applied on measurements for establishing the dose rate at 5 µm depth, were calculated using the Monte Carlo method. Absorbed dose rate at 5 µm depth in water (surface dose rate) measured using an extrapolation chamber and EBT3 Gafchromic film were 9.9 ± 0.7 and 8.2 ± 0.1 Gy h-1 mCi-1 respectively for the source activity of 3.46 ± 0.01 mCi. The surface dose rate calculated using the Monte Carlo method was 8.7 ± 0.2 Gy h-1 mCi-1, which agrees reasonably well with measurement. The measured dose rate per mCi offers scope for ascertaining treatment time required to deliver the dose for propitious therapeutic outcome. Additionally, on-axis depth dose and lateral dose profiles at 5 µm and 1 mm depth in water phantom were also calculated using the Monte Carlo method.


Assuntos
Braquiterapia/métodos , Lutécio/uso terapêutico , Método de Monte Carlo , Radioisótopos/uso terapêutico , Dosagem Radioterapêutica , Modelos Teóricos , Radiometria , Adesivo Transdérmico
3.
Radiat Prot Dosimetry ; 175(2): 149-162, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27765892

RESUMO

Neutron scatter contributions as a function of distance along the transverse axis of 241Am-Be source were estimated by three different methods such as shadow cone, semi-empirical and Monte Carlo. The Monte Carlo-based FLUKA code was used to simulate the existing room used for the calibration of CR-39 detector as well as LB6411 doseratemeter for selected distances from 241Am-Be source. The modified 241Am-Be spectra at different irradiation geometries such as at different source detector distances, behind the shadow cone, at the surface of the water phantom were also evaluated using Monte Carlo calculations. Neutron scatter contributions, estimated using three different methods compare reasonably well. It is proposed to use the scattering correction factors estimated through Monte Carlo simulation and other methods for the calibration of CR-39 detector and doseratemeter at 0.75 and 1 m distance from the source.


Assuntos
Calibragem , Nêutrons , Dosímetros de Radiação , Simulação por Computador , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Espalhamento de Radiação
4.
Radiat Prot Dosimetry ; 168(2): 184-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25958414

RESUMO

Spencer-Attix (SA) and Bragg-Gray (BG) mass-collision-stopping-power ratios of tissue-to-air are calculated using a modified version of EGSnrc-based SPRRZnrc user-code for the International Organization for Standardization (ISO) beta sources such as (147)Pm, (85)Kr, (90)Sr/(90)Y and (106)Ru/(106)Rh. The ratios are calculated at 5 and 70 µm depths along the central axis of the unit density ICRU-4-element tissue phantom as a function of air-cavity lengths of the extrapolation chamber l = 0.025-0.25 cm. The study shows that the BG values are independent of l and agree well with the ISO-reported values for the above sources. The overall variation in the SA values is ∼0.3% for all the investigated sources, when l is varied from 0.025 to 0.25 cm. As energy of the beta increases the SA stopping-power ratio for a given cavity length decreases. For example, SA values of (147)Pm are higher by ∼2% when compared with the corresponding values of (106)Ru/(106)Rh source. SA stopping-power ratios are higher than the BG stopping-power ratios and the degree of variation depends on type of source and the value of l. For example, the difference is up to 0.7 % at l = 0.025 cm for the (90)Sr/(90)Y source.


Assuntos
Imagens de Fantasmas , Fótons , Radiometria/normas , Padrões de Referência , Ar , Partículas beta , Elétrons , Humanos , Método de Monte Carlo , Radiometria/métodos , Água
5.
Appl Radiat Isot ; 103: 120-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26086681

RESUMO

Isotope production and Application Division of Bhabha Atomic Research Center developed (32)P patch sources for treatment of superficial tumors. Surface dose rate of a newly developed (32)P patch source of nominal diameter 25 mm was measured experimentally using standard extrapolation ionization chamber and Gafchromic EBT film. Monte Carlo model of the (32)P patch source along with the extrapolation chamber was also developed to estimate the surface dose rates from these sources. The surface dose rates to tissue (cGy/min) measured using extrapolation chamber and radiochromic films are 82.03±4.18 (k=2) and 79.13±2.53 (k=2) respectively. The two values of the surface dose rates measured using the two independent experimental methods are in good agreement to each other within a variation of 3.5%. The surface dose rate to tissue (cGy/min) estimated using the MCNP Monte Carlo code works out to be 77.78±1.16 (k=2). The maximum deviation between the surface dose rates to tissue obtained by Monte Carlo and the extrapolation chamber method is 5.2% whereas the difference between the surface dose rates obtained by radiochromic film measurement and the Monte Carlo simulation is 1.7%. The three values of the surface dose rates of the (32)P patch source obtained by three independent methods are in good agreement to one another within the uncertainties associated with their measurements and calculation. This work has demonstrated that MCNP based electron transport simulations are accurate enough for determining the dosimetry parameters of the indigenously developed (32)P patch sources for contact brachytherapy applications.


Assuntos
Braquiterapia/instrumentação , Método de Monte Carlo , Radioisótopos de Fósforo/uso terapêutico , Radiometria/instrumentação , Radiometria/métodos , Pele/efeitos da radiação , Bandagens , Braquiterapia/métodos , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Modelos Estatísticos , Radioisótopos de Fósforo/análise , Compostos Radiofarmacêuticos/análise , Compostos Radiofarmacêuticos/uso terapêutico , Dosagem Radioterapêutica , Propriedades de Superfície
6.
Radiat Prot Dosimetry ; 140(2): 137-46, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20308052

RESUMO

In the present study, the energy dependence of response of some popular thermoluminescent dosemeters (TLDs) have been investigated such as LiF:Mg,Ti, LiF:Mg,Cu,P and CaSO(4):Dy to synchrotron radiation in the energy range of 10-34 keV. The study utilised experimental, Monte Carlo and analytical methods. The Monte Carlo calculations were based on the EGSnrc and FLUKA codes. The calculated energy response of all the TLDs using the EGSnrc and FLUKA codes shows excellent agreement with each other. The analytically calculated response shows good agreement with the Monte Carlo calculated response in the low-energy region. In the case of CaSO(4):Dy, the Monte Carlo-calculated energy response is smaller by a factor of 3 at all energies in comparison with the experimental response when polytetrafluoroethylene (PTFE) (75 % by wt) is included in the Monte Carlo calculations. When PTFE is ignored in the Monte Carlo calculations, the difference between the calculated and experimental response decreases (both responses are comparable >25 keV). For the LiF-based TLDs, the Monte Carlo-based response shows reasonable agreement with the experimental response.


Assuntos
Simulação por Computador , Método de Monte Carlo , Síncrotrons , Dosimetria Termoluminescente/instrumentação , Dosimetria Termoluminescente/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA