Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biol Methods Protoc ; 9(1): bpad041, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304400

RESUMO

Understanding the relationship between science and society is an objective of science education and is included as a core competency in the AAAS Vision and Change guidelines for biology education. However, traditional undergraduate biology instruction emphasizes scientific practice and generally avoids potentially controversial issues at the intersection of biology and society. By including these topics in biology coursework, instructors can challenge damaging ideologies and systemic inequalities that have influenced science, such as biological essentialism and health disparities. Specifically, an ideologically aware curriculum highlights how ideologies and paradigms shape our biological knowledge base and the application of that knowledge. Ideologically aware lessons emphasize the relationship between science and society with an aim to create more transparent, scientifically accurate, and inclusive postsecondary biology classrooms. Here we expand upon our ideologically aware curriculum with a new activity that challenges undergraduate biology students to consider the impacts of healthcare disparities. This lesson allows instructors to directly address systemic inequalities and allows students to connect biomedical sciences to real-world issues. Implementing an ideologically aware curriculum enables students to challenge prevailing worldviews and better address societal problems that lead to exclusion and oppression.

2.
CBE Life Sci Educ ; 19(4): mr2, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33001771

RESUMO

National efforts to improve equitable teaching practices in biology education have led to an increase in research on the barriers to student participation and performance, as well as solutions for overcoming these barriers. Fewer studies have examined the extent to which the resulting data trends and effective strategies are generalizable across multiple contexts or are specific to individual classrooms, institutions, or geographic regions. To address gaps in our understanding, as well as to establish baseline information about students across contexts, a working group associated with a research coordination network (Equity and Diversity in Undergraduate STEM, EDU-STEM) convened in Las Vegas, Nevada, in November of 2019. We addressed the following objectives: 1) characterize the present state of equity and diversity in undergraduate biology education research; 2) address the value of a network of educators focused on science, technology, engineering, and mathematics equity; 3) summarize the status of data collection and results; 4) identify and prioritize questions and interventions for future collaboration; and 5) construct a recruitment plan that will further the efforts of the EDU-STEM research coordination network. The report that follows is a summary of the conclusions and future directions from our discussion.


Assuntos
Biologia , Estudantes , Biologia/educação , Biologia/ética , Humanos , Tecnologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-31160938

RESUMO

Our ability to collect and access large quantities of data over the last decade has been revolutionary for many social sciences. Suddenly, it is possible to measure human behavior, performance, and activity on an unprecedented scale, opening the door to fundamental advances in discovery and understanding. Yet such access to data has limitations that, if not sufficiently addressed and explored, can result in significant oversights. Here we discuss recent research that used data from a large global sample of high school students to demonstrate, paradoxically, that in nations with higher gender equality, fewer women pursued science, technology, engineering, and mathematics (STEM) degrees than would be expected based on aptitude in those subjects. The reasons for observed patterns is central to current debates, with frequent disagreement about the nature and magnitude of problems posed by the lack of female representation in STEM and the best ways to deal with them. In our international efforts to use big data in education research, it is necessary to critically consider its limitations and biases.

4.
PLoS One ; 12(12): e0189610, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29281676

RESUMO

Many factors have been proposed to explain the attrition of women in science, technology, engineering and math fields, among them the lower performance of women in introductory courses resulting from deficits in incoming preparation. We focus on the impact of mixed methods of assessment, which minimizes the impact of high-stakes exams and rewards other methods of assessment such as group participation, low-stakes quizzes and assignments, and in-class activities. We hypothesized that these mixed methods would benefit individuals who otherwise underperform on high-stakes tests. Here, we analyze gender-based performance trends in nine large (N > 1000 students) introductory biology courses in fall 2016. Females underperformed on exams compared to their male counterparts, a difference that does not exist with other methods of assessment that compose course grade. Further, we analyzed three case studies of courses that transitioned their grading schemes to either de-emphasize or emphasize exams as a proportion of total course grade. We demonstrate that the shift away from an exam emphasis consequently benefits female students, thereby closing gaps in overall performance. Further, the exam performance gap itself is reduced when the exams contribute less to overall course grade. We discuss testable predictions that follow from our hypothesis, and advocate for the use of mixed methods of assessments (possibly as part of an overall shift to active learning techniques). We conclude by challenging the student deficit model, and suggest a course deficit model as explanatory of these performance gaps, whereby the microclimate of the classroom can either raise or lower barriers to success for underrepresented groups in STEM.


Assuntos
Biologia/educação , Avaliação Educacional/métodos , Fatores Sexuais , Feminino , Humanos , Masculino , Estudantes , Universidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA