Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Environ Health Perspect ; 129(9): 97003, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34478338

RESUMO

BACKGROUND: Phthalates are commonly used endocrine-disrupting chemicals that are ubiquitous in the general population. Prenatal phthalate exposure may alter placental physiology and fetal development, leading to adverse perinatal and childhood health outcomes. OBJECTIVE: We examined associations between prenatal phthalate exposure in the second and third trimesters and the placental transcriptome at birth, including genes and long noncoding RNAs (lncRNAs), to gain insight into potential mechanisms of action during fetal development. METHODS: The ECHO PATHWAYs consortium quantified 21 urinary phthalate metabolites from 760 women enrolled in the CANDLE study (Shelby County, TN) using high-performance liquid chromatography-tandem mass spectrometry. Placental transcriptomic data were obtained using paired-end RNA sequencing. Linear models were fitted to estimate separate associations between maternal urinary phthalate metabolite concentration during the second and third trimester and placental gene expression at birth, adjusted for confounding variables. Genes were considered differentially expressed at a Benjamini-Hochberg false discovery rate (FDR) p<0.05. Associations between phthalate metabolites and biological pathways were identified using self-contained gene set testing and considered significantly altered with an FDR-adjusted p<0.2. RESULTS: We observed significant associations between second-trimester phthalate metabolites mono (carboxyisooctyl) phthalate (MCIOP), mono-2-ethyl-5-carboxypentyl phthalate, and mono-2-ethyl-5-oxohexyl phthalate and 18 genes in total, including four lncRNAs. Specifically, placental expression of NEAT1 was associated with multiple phthalate metabolites. Third-trimester MCIOP and mono-isobutyl phthalate concentrations were significantly associated with placental expression of 18 genes and two genes, respectively. Expression of genes within 27 biological pathways was associated with mono-methyl phthalate, MCIOP, and monoethyl phthalate concentrations. DISCUSSION: To our knowledge, this is the first genome-wide assessment of the relationship between the placental transcriptome at birth and prenatal phthalate exposure in a large and diverse birth cohort. We identified numerous genes and lncRNAs associated with prenatal phthalate exposure. These associations mirror findings from other epidemiological and in vitro analyses and may provide insight into biological pathways affected in utero by phthalate exposure. https://doi.org/10.1289/EHP8973.


Assuntos
Poluentes Ambientais , Ácidos Ftálicos , Criança , Exposição Ambiental , Poluentes Ambientais/toxicidade , Poluentes Ambientais/urina , Feminino , Humanos , Recém-Nascido , Exposição Materna/efeitos adversos , Ácidos Ftálicos/urina , Placenta , Gravidez , Terceiro Trimestre da Gravidez , Transcriptoma
2.
JCI Insight ; 3(24)2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30568031

RESUMO

Drug-induced kidney injury, largely caused by proximal tubular intoxicants, limits development and clinical use of new and approved drugs. Assessing preclinical nephrotoxicity relies on animal models that are frequently insensitive; thus, potentially novel techniques - including human microphysiological systems, or "organs on chips" - are proposed to accelerate drug development and predict safety. Polymyxins are potent antibiotics against multidrug-resistant microorganisms; however, clinical use remains restricted because of high risk of nephrotoxicity and limited understanding of toxicological mechanisms. To mitigate risks, structural analogs of polymyxins (NAB739 and NAB741) are currently in clinical development. Using a microphysiological system to model human kidney proximal tubule, we exposed cells to polymyxin B (PMB) and observed significant increases of injury signals, including kidney injury molecule-1 KIM-1and a panel of injury-associated miRNAs (each P < 0.001). Surprisingly, transcriptional profiling identified cholesterol biosynthesis as the primary cellular pathway induced by PMB (P = 1.22 ×10-16), and effluent cholesterol concentrations were significantly increased after exposure (P < 0.01). Additionally, we observed no upregulation of the nuclear factor (erythroid derived-2)-like 2 pathway, despite this being a common pathway upregulated in response to proximal tubule toxicants. In contrast with PMB exposure, minimal changes in gene expression, injury biomarkers, and cholesterol concentrations were observed in response to NAB739 and NAB741. Our findings demonstrate the preclinical safety of NAB739 and NAB741 and reveal cholesterol biosynthesis as a potentially novel pathway for PMB-induced injury. To our knowledge, this is the first demonstration of a human-on-chip platform used for simultaneous safety testing of new chemical entities and defining unique toxicological pathway responses of an FDA-approved molecule.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Rim/efeitos dos fármacos , Polimixinas/toxicidade , Animais , Antibacterianos/toxicidade , Biomarcadores , Desidrocolesteróis , Desmosterol , Modelos Animais de Doenças , Expressão Gênica , Heme Oxigenase-1 , Receptor Celular 1 do Vírus da Hepatite A , Humanos , Rim/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Lanosterol , Fator 2 Relacionado a NF-E2/metabolismo , Polimixina B/farmacologia , Polimixinas/farmacologia
3.
Inhal Toxicol ; 19(14): 1107-19, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17987463

RESUMO

Ambient fine particulate matter has been associated with cardiovascular and other diseases in epidemiological studies, and diesel exhaust (DE) is a major source of urban fine particulate matter. Air pollution's cardiovascular effects have been attributed to oxidative stress and systemic inflammation, with resulting perturbation of vascular homeostasis. Peripheral leukocytes are involved in both inflammation and control of vascular homeostasis. We conducted a pilot study using microarray techniques to analyze whether global gene expression profiles in peripheral blood mononuclear cells (PBMCs) can elucidate effects of DE inhalation, for further investigation of mechanisms underlying vascular effects. In a double-blind, crossover, controlled exposure study, healthy adult volunteers were exposed in randomized order to filtered air (FA) and diluted DE in 2-h sessions. We isolated RNA (Trizol/Qiagen method) from PBMCs before and two times after each exposure. RNA samples were arrayed using the Affymetrix U133 Plus 2.0 arrays. Microarray analyses were conducted on five subjects with available RNA samples from exposures to FA and to the highest DE inhalation (200 microg/m(3) of fine particulate matter). Following data normalization and statistical analysis, a total of 1290 out of 54,675 probe sets evidenced differential expression (more than 1.5-fold up- or downregulated with p < .05) between FA and DE exposure. These genes demonstrated a clear distinction between the FA and DE groups and an indication of a time-dependent effect on biological processes such as inflammation and oxidative stress. This study addresses the value of using PBMC gene expression to assess pathways relevant to cardiovascular effect in healthy individuals.


Assuntos
Perfilação da Expressão Gênica/métodos , Exposição por Inalação , Leucócitos Mononucleares/fisiologia , Transcrição Gênica/fisiologia , Emissões de Veículos , Adulto , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Masculino , Material Particulado/administração & dosagem , Material Particulado/efeitos adversos , Emissões de Veículos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA